DRAFT / SSAI


November 1, 2002

DRAFT

This is a work-in-progress document describing the access of level 0, level 1 and level 2 data from the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) instrument, which is part of a complement of instruments on the Upper Atmosphere Research Satellite (UARS). SUSIM primarily measures the solar spectral irradiance in the ultraviolet spectral region. Originally, the data were (are) generated for computer systems compatible with the Compaq (Digital Equipment) Computer Corporation VAX/Alpha computers running under the VMS operating system. The following describes those data that are converted to be compatible with Silicon Graphics Incorporated (SGI) computer systems running under IRIX. Therefore they are also compatible with the facilities of the GSFC Distributed Active Archive Center (DAAC). The following also describes software for the access of the converted data files.

SSAI

41.0 Introduction.

1.1 Data Products and File Names.
4
1.1.1 Level 0 Data Products and File Names
4
1.1.2 Level 1 Data Products and File Names.
5
1.1.3 Level 2 Data Products and File Names
5
1.2 Software Products and File Names.
5
1.2.1. Level 0 Software
6
1.2.2 Level 1 Software
6
1.2.3 Level 2 Software
6
1.3 Additional Software
7
1.3.1 Additional level 0 Software
7
1.3.2 Additional level 1 Software
7
1.3.3 Additional level 2 Software
8
2.0 Related Documentation
8
3.0 SUSIM Files and Data Structures
9
3.1 Level 0 Files and Data Structures
9
3.2 SUSIM Level 1 File and Data Structure
9
3.3 SUSIM Level 2 File and Data Structure
10
4.0 Access Software
10
4.1 Programming Considerations.
10
4.1.1 Arrays
11
4.1.2 Fill Data.
11
4.2 Level 0 Fortran Software
11
4.2.1 Fortran Access Routine to Read Level 0 Data (fth_readl0)
11
4.3 Level 0 C Software
12
4.3.1 C Function Routine to Read Level 0 Data (mcb_readl0_c)
12
4.4 Level 1 Fortran Software
13
4.4.1 Level 1 Fortran Access Routine for Subtype SOLAR_SCANS (fth_r_susim_l1_solar_scans_str)
13
4.4.2 Level 1 Fortran Access Routine for Subtype
18
4.5 Level 1 C Software
19
4.5.1 Level 1 C Access Function Routine for Subtype SOLAR_SCANS (fth_r_susim_l1_solar_scans_c)
19
4.5.2 Level 1 C Access Array Transform Routines
20
4.6 Level 2 Fortran Software
21
4.6.1 Level 2 Fortran File Access Routine for Subtypes SCANS_MID, SCANS_PROF, SCANS_PARAM (fth_r_susim_l2_all_str)
21
4.6 Level 2 C Software
22
4.6.1 Level 2 C File Access Routine for Subtypes SCANS_MID,SCANS_PROF, and SCANS_PARAM (fth_r_susuim_l2_all_str_c)
22
Appendix: Additional software
25
A.1 Additional Level 0 Fortran Software
25
A.1.1 Level 0 Fortran File Open Routine (opn_l0_file)
25
A.1.2 Level 0 Fortran File Name Routine (gen_l0_name)
26
A.1.3 Level 0 Sample Fortran Driver and Link Procedure
27
A.2 Additional Level 0 C Software
28
A.2.1 Level 0 C File Open Function Routine (opn_l0_file_c)
28
A.2.2 Level 0 C File Name Function Routine (gen_l0_name_c)
29
A.2.3 Level 0 Sample C Driver and Link Procedure
29
A.3 Additional Level 1 Fortran Software.
30
A.3.1 Level 1 Fortran File Open Routine (opn_l1_file)
31
A.3.2 Level 1 Fortran File Name Routine (gen_l1_name)
32
A.3.3 Level 1 Sample Fortran Driver and Link Procedure
32
A.4 Additional Level 1 C Software.
34
A.4.1 Level 1 C File Open Function (opn_l1_file_c)
34
A.4.2 Level 1 C File Name Function (gen_l1_name_c)
35
A.4.3 Level 1 Sample C Driver and Link Procedure
35
A.5 Additional Level 2 Fortran Software
36
A.5.1 Level 2 Fortran File Open Routine(opn_l2_file)
36
A.5.2 Level 2 Fortran File Name Routine (gen_l2_name)
37
A.5.3 Level 2 Sample Fortran Driver and Link Procedure
37
A.6 Additional Level 2 C Software
39
A.6.1 Level 2 C File Open Code (opn_l2_file_c)
39
A.6.2 Level 2 C File Name Function (gen_l2_name_c)
40
A.6.3 Level 2 Sample C Driver and Link Procedure
40



1.0 Introduction.

This document describes the access of level 0, level 1, and level 2 data from the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) instrument, which is part of a complement of instruments on the Upper Atmosphere Research Satellite (UARS). SUSIM primarily measures the solar spectral irradiance in the ultraviolet spectral region. Currently, this document applies to SUSIM level 0, level 1, and level 2 data files that have been converted to be compatible with Silicon Graphics computers running under IRIX. The converted files are also compatible with the facilities of the NASA GSFC Distributed Active Archive Center (DAAC). The original files were created by UARS production processing running under the Compaq (Digital Equipment Corporation (DEC)) VMS operating system, on the UARS Central Data Handling Facility (CDHF). Corresponding activities for the UARS instrument calibration data will be included at a later date. The conversion of UARS level 3 data is not part of this activity.

The software that does the actual conversion of the original files is also not part of this description. The following describes the converted files and the software that are provided to access the converted files. Routines to read the converted file are provided in both Fortran and C. The original data were produced using Fortran code.

1.1 Data Products and File Names.

Data products consist of the various levels of SUSIM data. Basically, the level 0 data are the telemetry data that have been sorted  and stored. Level 1 data include sorted data, while level 2 data are products that are in scientific units suitable for analysis. The data files within a data level may be further divided into subtypes, such as the specific parameter(s) measured. The UARS file name convention describe the files uniquely, and are based on the data level, on the data type (subtype), and on the day of year, among other things. Examples of subtypes are solar_scans (level 1) and scans_mid (level 2).

1.1.1 Level 0 Data Products and File Names

Nominally, there are 15 types of UARS level 0 files for each day. Of these, 6 files are pertinent to SUSIM. Examples are as follows

     susima_l0_d2370.v0002_c01_prod

     susimb_l0_d2370.v0002_c01_prod

     engineering_l0_d1101.v0002_c01_prod

     spacecraft_l0_d2373.v0002_c01_prod

     obc_l0_d1673.v0002_c01_prod

     quality_l0_d1644.v0002_c01_prod

The UARS level 0 file name convention begins with the type acronym (e.g., susima, engineering,...), followed by the level(i.e., l0). Next is the UARS day number (e.g., 2370; September 12, 1991 corresponds to UARS day number 1, January 19 1992 is UARS day 130). This is followed by the data version number (0002), and then by the cycle number (01). The data version number corresponds to the software that produced the data. For each data version, there is a cycle number that is nominally 1. If reprocessing is needed for the same version, the cycle is incremented. The most recent data correspond to the highest version and cycle numbers. The last four characters of the file name are always 'prod'.

In the above, files susima_l0_d2370.v0002_c01_prod and susimb_l0_d2370.v0002_c01_prod are the two types of susim level 0 data for UARS day 2370, data version 0002, cycle 01, while the other 4 types of files contain complementary flight data.

1.1.2 Level 1 Data Products and File Names.

Currently, there is one type of SUSIM level 1 (subtype SOLAR_SCANS) data files that are converted and archived. Nominally, the files are generated on a daily basis, and there is one file for each subtype for each day. A typical file name is

   susim_l1_ssolar_scans_d2564.v0019_c01_bnbe

The UARS file name convention begins with the instrument acronym (SUSIM), followed by the level (1), which in turn is followed by the subtype (SSOLAR_SCANS). Next is the UARS day number (D, e.g., September 12, 1991 corresponds to UARS day number 0001, and January 1 1992 is UARS day 0112) and the data version number (V0019), followed by the cycle number (C01). The data version number is set by the instrument principal investigator, and corresponds to the software that produces the data. The data cycle number is determined by the UARS production processing. For each data version, there is a cycle number that is nominally 1. If reprocessing is needed for the same version, the cycle is incremented.

The last four characters of the file name were 'prod' as originally generated on the UARS CDHF, but have been replaced here by 'bnbe' to denote that the file has been converted.

1.1.3 Level 2 Data Products and File Names

There are currently 3 types of SUSIM level 2 data (subtypes SCANS_MID, SCANS_PROF, AND SCANS_PARAM) files that are converted and archived. Nominally the files are generated on a daily basis and there is one file for each day for each subtype. Typical file names are

   susim_l2_sscans_mid_d2564.v0019_c01_bnbe

   susim_l2_sscans_param_d2564.v0019_c01_bnbe

   susim_l2_sscans_prof_d2564.v0019_c01_bnbe

The file name convention is similar to that for level 1 files, described above.

1.2 Software Products and File Names.

The software products are divided into required software and additional products. The required software consists of access functions/routines in both Fortran and C that can be used to read the files. Additional software are those which are provided as a convenience for the user and is not formally part of this software package. Examples of additional software are sample drivers that use the required software, and routines that generate the proper file names and open the files. Additional software is described in the Appendix.

Because some of the software is made to run under both IRIX and under VMS, for the sake of consistency, the following file name conventions are used for the software. File names for Fortran code end in '.for', and files written in C will end in '.c'. Link scripts and executable names end in '.com' and '.exe', respectively.

The names of the software modules are listed next. The software are given in terms of subroutine/function names or file names. The subroutine/function names and file names are used interchangeably, but the latter also contain extensions such as '.for', as noted above.

1.2.1. Level 0 Software

The following routine/function can be used to read each of the level 0 files listed above. File names are given in parenthesis.

Routine name                 Description

(file name)

------------                 -----------

fth_readl0                   Fortran routine to read level 0 files of

(fth_readl0.for)             all types

mcb_readl0_c                 C code to read level 0 files of all types

(mcb_readlo_c.c)

1.2.2 Level 1 Software

The following software is provided to read the level 1 files.

Routine name                           Description

(file name)

------------                           -----------

fth_r_susim_l1_solar_scans_str         Fortran routine to read level 1

(fth_r_susim_l1_solar_scans_str.for)   data records of subtype 

                                       SOLAR_SCANS

fth_r_susim_l1_solar_scans_str_c       C function to read level 1

(fth_r_susim_l1_solar_scans_str_c.c)   data records of subtype 

                                       SOLAR_SCANS

1.2.3 Level 2 Software

The following software is provided to read the level 2 data files.

Module name                      Description

(file name)

------------                     -----------

fth_r_susim_l2_all_str           Fortran routine to read level 2

(fth_r_susim_l2_all_str.for)     data records of subtypes

                                 SCANS_MID, SCANS_PROF, SCANS_PARAM

fth_r_susim_l2_all_str_c         C function to read level 2

(fth_r_susim_l2_all_str_c.c)     data records of subtypes

                                 SCANS_MID, SCANS_PROF, SCANS_PARAM

1.3 Additional Software

As noted earlier, additional software are provided as a convenience to users, but is not formally part of the software package per se. Used together with the access routines, they can be linked into executables to read and list the data. Here, they are listed for completeness. Details are given in the Appendix. File names are given in parenthesis.

1.3.1 Additional level 0 Software
Routine Name                 Description

(file name)

-----------                  -----------

get_l0                       Fortran sample driver for using level 0

(get_l0.for)                 routines

opn_l0_file                  Fortran code to open level 0 files

(opn_l0_file.for)

gen_l0_name                  Fortran code to generate level 0 file names

(gen_l0_name.for)

get_l0_c                     C sample driver for using level 0

(get_l0_c.c)                 function routines

opn_l0_file_c                C code to open level 0 files

(opn_l0_file_c.c)

gen_l0_name_c                C code to generate level 0 file names

(gen_l0_name_c.c)

1.3.2 Additional level 1 Software

Routine Name                        Description

(file name)

-----------                       -----------

get_susim_l1_solar_scans_str        Fortran sample driver for level 1

(get_susim_l1_solar_scans_str.for)  software

opn_l1_file                         Fortran code to open level 1 files

(opn_l1_file.for)

gen_l1_name                         Fortran code to generate level 1

(gen_l1_name.for)                   file names

get_susim_l1_solar_scans_str_c      C sample driver for using level 1

(get_susim_l1_solar_scans_str_c.c)  software

opn_l1_file_c                       C code to open level 1 files

(opn_l1_file_c.c)

gen_l1_name_c                       C code to generate level 1 file

(gen_l1_name_c.c)                   names

1.3.3 Additional level 2 Software

Routine Name                        Description

(file name)

-----------                         -----------

get_susim_l2_all_str                               Fortran sample driver for level 2

(get_susim_l2_all_str.for)         software

opn_l2_file                        Fortran code to open level 2 files

(opn_l2_file.for)

gen_l2_name                        Fortran code to generate level 2 file

(gen_l2_name.for)                  names

get_susim_l2_all_str_c             C sample driver for level 2 software

(get_susim_l2_all_str_c.c)

opn_l2_file_c                      C code to open level 2 files

(opn_l2_file_c.c)

gen_l2_name_c                      C code to generate level 2 file names

gen_l2_name_c.c)

2.0 Related Documentation
A general description of the scientific goals and the instrument is found in the following journal paper:

The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) Experiment on Board the Upper Atmosphere Research Satellite (UARS), Brueckner, G. E., K. L. Edlow, L. E. Floyd, J. L. Lean, and M. E. VanHoosier, J. Geophys. Res., 98, 10,695-10,711, June 20, 1993.

Related SUSIM documents are

a) SUSIM LEVEL 2 DATA DESCRIPTION AND STRUCTURE, Version 2.4, 15 September 1994

The contents are in file NURSSU05.DOC.

b) SUSIM WHOLE DATA SET DESCRIPTION, Version 2.4, 15 September 1994

This document is contained in file NURSSU07.DOC

c) UARS CDHF SOFTWARE SYSTEM (UCSS) PROGRAMMER'S GUIDE TO PRODUCTION SOFTWARE SUPPORT SERVICES, COMPUTER SCIENCES CORPORATION, OCTOBER,1995.

This document describes access routines for UARS data levels 0 and 3, but not for levels 1 and 2. The contents can be found in file 

     ucss_pg_oct95.mem

Currently, there is no documentation available for the CLAES level 1 data per se.

3.0 SUSIM Files and Data Structures

3.1 Level 0 Files and Data Structures

Unlike the converted level 1 and level 2 files, the level 0 files are unchanged from the original VMS versions. The contents of level 0 files are mostly byte-oriented, and the relatively few data words that need to be converted are done so by the read routine that is provided and described below. Consequently, users should only use the included software for this purpose.

All Level 0 files contain fixed length records, and data access is direct. The record lengths for relevant file types are as follows

   TYPE         RECORD LENGTH (BYTES)

   ----         ---------------------

   susima        8256

   susimb        8256

   engineering   8256

   spacecraft   21568

   obc          14400

   quality       2532

For more details, refer to the document

  UARS CDHF SOFTWARE SYSTEM (UCSS) PROGRAMMER'S GUIDE TO PRODUCTION  

  SOFTWARE SUPPORT SERVICES, COMPUTER SCIENCES CORPORATION,OCTOBER,1995.

The contents can be found in file ucss_pg_oct95.mem

3.2 SUSIM Level 1 File and Data Structure

As noted above, an example of a converted level 1 SUSIM file is

   susim_l1_ssolar_scans_d2564.v0019_c01_bnbe

The file name convention has also been given earlier.

The data file of subtype SOLAR_SCANS is the primary Level 1 SOLAR product and is passed to the Level 2 programs. The files consist of fixed length records written in binary. All files of subtype SOLAR_SCANS have the same record length, namely, 22 four-byte words. Data in the converted files appear in the same order and the same records as in the original VMS files. 

Examples of other types of catalogued level 1 SUSIM files are 

???????

However, these types are not needed for archival purposes.

Currently, there is no available documentation per se on the level 1 data.

3.3 SUSIM Level 2 File and Data Structure

As noted above, examples of level 2 files are

   susim_l2_sscans_mid_d2564.v0019_c01_bnbe

   susim_l2_sscans_param_d2564.v0019_c01_bnbe

   susim_l2_sscans_prof_d2564.v0019_c01_bnbe

The level 2 files contain the solar irradiances. The files consist of fixed-length records that are 22 four-byte words long. Data in the converted files appear in the same order and the same records as in the original VMS files. 

Documentation for level 2 data  is contained in file The contents are in file NURSSU05.DOC.

4.0 Access Software

Software for accessing the data is provided in the form of Fortran routines and C functions. For consistency, because software is provided in both Fortran and C, and because some of the software are made to run under both IRIX and under VMS, the following name conventions are used for the software: a) file names for Fortran code end in '.for', and files written in C end in '.c'; b) link scripts and executable file names end in '.com' and '.exe', respectively.

4.1 Programming Considerations.

The converted files contain the same records and structures as the original files. Because the order and structure of the records have been preserved, the original SUSIM documentation remain applicable, but with the following issues in this section borne in mind 

4.1.1 Arrays

The indices of arrays that are read by Fortran routines begin with the same values as in the original VMS routines. Arrays that are read by C programs begin with index 0.

For multidimensional arrays, C and Fortran are different as to which index varies fastest (row major, row minor). The C access routines which are provided accounts for this, so that the various indices of the arrays have the same meaning for both C and Fortran routines, and conform to the original documentation.

4.1.2 Fill Data.

The original VMS files use an 'illegal floating point' number for fill data. This number in HEX is '8000'X. SUSIM does not use the illegal floating point for fill data, so the user need not take preventive measures to avoid unexpected aborts.

4.2 Level 0 Fortran Software 
4.2.1 Fortran Access Routine to Read Level 0 Data (fth_readl0)

Because the level 0 data files are unchanged from the original VMS versions, users should use only fth_readl0 (file fth_readl0.for), or its C equivalent, for reading the level 0 data on systems which conform to the big endian addressing convention (e.g., SGI, SUN). The level 0 data files are essentially byte-oriented, and only the first 64 bytes of the data records (the data record header) need be converted. It was judged that this conversion should be done by the read routine. Record access is direct, and record 1 is the file label record (all ASCII) followed by data records. The first 64 bytes of each data record (the data record header) are mostly information in integer words, and is converted by the read software. The rest of each data record is byte-oriented.

Usage:

      CALL FTH_READL0(LUN_RD,IREC,IREC_LEN,L0_BUFF,

     & ISWAP,IOS_RD)

  ARGUMENT DESCRIPTION

 ARGUMENT      TYPE        I/O     DESCRIPTION

 --------      ----        ---     -----------------------------

 LUN_RD        I*4         I       LOGICAL UNIT OF INPUT FILE

 IREC          I*4         I       RECORD TO READ (1 OR GREATER)

 IREC_LEN      I*4         I       RECORD LENGTH IN BYTES

                                   claes        24640

                                   haloe        16448

                                   hrdi         19520

                                   isams         8256

                                   mls          10304

                                   pem          28736

                                   solstice      2532

                                   susima        8256

                                   susimb        8256

                                   windii       16448

                                   acrim         4160

                                   engineering   8256

                                   spacecraft   21568

                                   obc          14400

                                   quality       2532

 L0_BUFF       CHAR*1      O       BUFFER CONTAINING LEVEL 0 DATA

               (IREC_LEN)

 ISWAP         I*4         I       0:FOR LITTLE ENDIAN COMPUTERS

                                   1:FOR BIG ENDIAN COMPUTERS 

 IOS_RD        I*4         O       READ STATUS 0:NO ERROR

This routine calls 3 other routines that are used to convert from little endian to big endian standards, namely,

     swap32 (swap32.for)

     swap16 (swap16.for)

     swap64 (swap64.for)

The file names are in parenthesis). Users need not know how to call these routines explicitly as they are used only by fth_readl0.

4.3 Level 0 C Software 

4.3.1 C Function Routine to Read Level 0 Data (mcb_readl0_c)
Because the level 0 data files are unchanged from the original VMS versions, users should use only mcb_readl0_c (file mcb_readl0_c.c), or its Fortran equivalent, for reading the level 0 data on systems which conform to the big endian addressing convention (e.g., SGI, SUN). 

Usage:

void mcb_readl0_c(FILE *fp_rd,int irec,int in_recl_byte,

                      signed char *l0_buff,int iswap,int *ios_rd);

     mcb_readl0_c(fp_rd,irec,in_recl_byte,&l0_buff[0],iswap,&ios_rd);

-----------------------------------------------------------------------

       THIS ROUTINE READS THE UARS LEVEL 0 DATA. IT ASSUMES

       THAT THE DATA FILE CORRESPONDS TO THE ORIGINAL, VMS

       DATA FILES. IN ORDER TO INTERPRET CORRECTLY, FOR

       BIG ENDIAN COMPUTERS, ISWAP SHOULD BE SET TO 1.

-----------------------------------------------------------------------

  ARGUMENT DESCRIPTION

 ARGUMENT      TYPE        I/O     DESCRIPTION

 --------      ----        ---     -----------------------------

 fp_rd         FILE*       I       pointer to input file-buffer-string

 irec          I*4         I       RECORD NUMBER TO READ (1 OR GREATER)

 irec_len      I*4         I       RECORD LENGTH IN BYTES

 l0_buff       CHAR*1      O       BUFFER CONTAINING LEVEL 0 DATA

 iswap         I*4         I       0:FOR LITTLE ENDIAN COMPUTERS

                                   1:FOR BIG ENDIAN COMPUTERS

 ios_rd        I*4         O       READ STATUS 0:NO ERROR

-----------------------------------------------------------------------

This routine calls 3 other routines that are used to convert from 

little endian to big endian standards, namely,

     swap32_c (swap32_c.c)

     swap16_c (swap16_c.c)

     swap64_c (swap64_c.c)  

Users need not know how to invoke these routines explicitly as they are used only by mcb_readl0_c.

4.4 Level 1 Fortran Software

The software consists of one routine which users can call to read the level 1 header and data records. Additional software in the form of a sample driver, a file name generation routine, and a file open routine is provided. A procedure is also provided to link the driver and routines. The resulting executable can be used to read the data and write selected portions to an output file for analysis. More details appear in the Appendix.
4.4.1 Level 1 Fortran Access Routine for Subtype SOLAR_SCANS (fth_r_susim_l1_solar_scans_str)

This routine reads data records of the SUSIM level 1 data (subtype SOLAR_SCANS). Aside from opening the data file, it is the only routine necessary.

USAGE:

   CALL FTH_R_SUSIM_L1_SOLAR_SCANS_STR(LUN_RD,IREC,

     & activity_frame,IOS_RD1)

 ARGUMENT LIST DESCRIPTION

 ARGUMENT         TYPE       I/O    DESCRIPTION

 --------         ----       ---    ---------------------------------

 LUN_RD           I*4        I      LOGICAL UNIT NUMBER OF INPUT

                                    FILE

 IREC             I*4        I      RECORD NUMBER TO READ.

                                    NOMINALLY, RECORDS ARE READ 

                                    SEQUENTIALLY.

                                    DIRECT ACCESS IS USED TO PRESERVE

                                    CONSISTENCY BETWEEN COMPILERS

 activity_frame   RECORD     O      DATA RECORD READ

                  STRUCTURE         SEE BELOW FOR Structure

                                    /Activity_Reduct_Record/

 IOS_RD1          I*4        O      FORTRAN READ STATUS. 0:NO ERROR

The following structure and record must be declared in the calling routine. See example in the Appendix (GET_SUSIM_L1_SOLAR_SCANS_STR.FOR).

-----------------------------------------------------------------------

    BEGIN INCLUDE FILE ACTIVITY_REDUCT_RECORD_DSR.INC

-----------------------------------------------------------------------

Structure /Activity_Reduct_Record/

Integer*4 obc_time(2) !ON-BOARD COMPUTER TIME UDTF (YRDAY,MSEC)

                              !TIME OF SOLAR MEASUREMENTS

        Integer*2 time    !SUSIM counter time (dual UARS seconds)       

                          !Time at which the signal in this record 

                          !was collected

        Byte iop_index    !Instrument Operating Program (IOP) Index

                          !Line number of the IOP at which data were

                          !collected.

        Byte set_index    !A number identifying the location in the

                          !SUSIM set

                          !table of the parameters defining the

                          !instrument

                          !configuration when signal was collected.

                          !A value of zero indicates a artificial

                          !separator and

                          !not a real data item.

        Byte seq_index    !number identifying the location in the SUSIM

                          !sequence table which specifies the sets to

                          !be executed in sequence

                          !at the time the datum was collected. 

        Byte task_id      !Software Task Identification

                          !Index identifying the mode of operation of

                          !the instrument when datum was collected. 

        Byte detector     !When decoded, this identifies the detector

                          !used to measure the signal, whether or not

                          !this detector was

                          !powered on, the gain setting of the

                          !electrometer, and

                          !whether or not the electrometer calibrator

                          !was on. 

                          !If the bits are labeled 1-8, from LSB to MSB:

                          ! 1: detector select 0

                          ! 2: detector select 0

                          ! 3: primary/secondary (primary is 0, 

                          !    secondary is 1)

                          ! 4: power status (on is 1, off is 0)

                          ! 5: calibration status (on is 0, off is 1)

                          ! 6-7: gain status: high is 0, mid is 2 or 3,

                          ! low is 1

                          ! 8: detector detach status: 1 is detached,0

                          ! is connected

        Byte d2_lamp      ! Deuterium lamp state

                          ! Encoded Deuterium lamp states, e.g. whether

                          ! or not

                          ! the lamp was powered on, the state of the

                          ! filament

                          ! current, and the power supply used.

                          ! If the bits are labeled 1-8, from LSB to

                          ! MSB:

                          ! 1: high voltage A status (0 is on, 1 is off)

                          ! 2: filament A status (high is 1, low is 0)

                          ! 3: power A status (0 is on, 1 is off)

                          ! 4: high voltage B status (0 is on, 1 is off)

                          ! 5: filament B status (high is 1, low is 0)

                          ! 6: power B status (0 is on, 1 is off)

                          ! 7: cross strap 1

                          ! 8: cross strap 2

        Byte det_d2       ! D2 and Detector Spectrometer Status

                          !When decoded, this byte contains the lamp and

                          !detector status as it relates to the

                          !spectrometer. Details below

                          !If the bits are labeled 1-8, from LSB to MSB:

                          ! 1: D2 lampswitch enable

                          ! 2: D2 lamp a/b select (a is 1, b is 0)

                          ! 3: D2 lamp relay on/off (on is 1, off is 0)

                          ! 4: detector switch enable

                          ! 5: spare

                          ! 6: detector relay on/off

                          ! 7: valid command

                          ! 8: upper/lower spectrometer (1 is upper, 0

                              !is lower)

        Byte calibrator

                          !Electrical current calibrator

                          !Detector calibrator status

                          !If the bits are labeled 1-8, from LSB to MSB:

                          !1-2: voltage ramp

                          !3-4: relay status: 0 is both on, 1 is .039pf,

                          !2 is 10pf, and 3 is both off.

                          !5: reset integrator status

                          !6: spare

                          !7: relay pulse active

                          !8: integrator saturation (1 is saturated, 0

                          !is not)

        Byte instr_state(6)

                          !Instrument state

                          !Encrypted instrument configuration.

                          !If the bits are labeled 1-8, from LSB to MSB:

                          !Byte 1: 1-3: upper grating number (1-4)

                          !        4-5: lower door (closed is 1, open is

                          !             2, vented is 3)

                          ! 6-7: upper door (closed is 1, open is 2,

                          ! vented is 3)

                          ! 8: Spectrometer

                          !Byte 2:1-4: lamp position: 5 is solar,1-4 at

                          !upper,6-9 at lower

                          !5-7: lower grating

                          !Byte 3: 1-4: entrance filter/off

                          ! 5-6: lower shutter (1 is closed, 2 is open)

                          ! 7-8: upper shutter (1 is closed, 2 is open)

                          !Byte 4: 1-2: lower exit slit

                          ! 3-4: upper exit slit

                          ! 5-6: lower entrance slit

                          ! 7-8: upper entrance slit

                          !Byte 5: 1-3: detector drum

                          !4-7: exit filter

                          !Byte 6: 1-8: coarse encoder reading of

                          !wavelength grating

                          !scanner

Byte rule_int_pt_sp_saa 

                        !Moves, encoder interpolation, precision 

                        !track (PT), sun 

                        !presence (SP), and South Atlantic Anomaly (SAA) 

                        !flag

                        !Indicates what moves rule applied, if encoder

                        ! position

                        !was interpolated, precision track , sun

                        !presence, and

                        !SAA status. Details below

                        !If the bits are labeled 1-8, from LSB to MSB:

                        !1-2: 0 not in SAA

                        !     1     in SAA

                        !     2 invalid SAA value

                        !3:   0 not SP

                        !     1     SP

                        !     SP Indicates whether or the not the sun in

                        !     the 

                        !     field of view of the SSPP PSS (Platform

                        !     Sun Sensor)

                        !     when datum was collected.

                        !4:   0 not PT

                        !     1     PT 

                        !     SSPP tracking status: When PT is true, the

                        !     SSPP is

                        !     attempting to track something and has

                        !     "got" it in 

                        !     view.  Usually, this is the center of the

                        !     sun, but

                        !     this applies also to offset maneuvers

                        !     where 

                        !     pointing to a specific offset from the

                        !     sun away 

                        !     from the sun is intended.

                        !5:   spare

                        !6:   0 no encoder interpolation

                        !     1    encoder interpolation

                        !     Encoder position is interpolated using

                        !     nearest 

                        !     reported encoder readings when this bit is

                        !     set.

                        !7:   0 Neither rule 1 nor rule 4 of moves

                        !     applied.

                        !     1 (and bit 6 is 0) Either rule 1 or rule 4

                        !        of

                        !        moves applied.

                        !     1 (and bit 6 is 1) Rule 3 of moves

                        ! applied.

                        !8:   spare

        Byte sspp_mode_and_target

                        !Solar Stellar Pointing Platform Tracking Mode

                        ! and 

                        !Target

                        !sspp_mode_and_target

                        !Lower 5 bits identify what is viewed by the

                        ! SSPP. A 

                        !zero indicates no target, a one identifies the

                        ! sun, the

                        !remainder of the values (up to 20) identify 

                        !a star. For

                        !SUSIM, it is only greater than 1 when a lamp 

                        !is observed or by mistake.

                        !Values of remaining 3 bits identify the 

                        !SSPP mode: 

                        !1: open loop (no sun sensor feedback control)

                        !2: closed loop (sun sensor feedback control)

                        !3: slewing (moving in a direction and at a

                        ! rate)

                        !  4: waiting

                        !  5: position cmd (moving to a given pointing

                        ! location)

        Real*4 encoder_pos

                        !Linear encoder position

                        !Encoder position of the irradiance

        Real*4 wavelength !wavelength of the irradiance(nm)

        Byte step_size    ! add 256 to it if it is negative

                         !Signal step size

                         !number of elapsed pulses before the next

                         ! irradiance 

                         ! measurement. 50 pulses equals 1NM 

        Real*4 signal    !Solar Irradiance(milliwatt/m2/nm)

        Integer*2 number_signals

                         !Number of Signals

                         !Number of signals gathered each of 128

                         ! millisec

                         !duration used to determine the irradiance

                         !datum.

        Real*4 signal_std

                         !Signals standard deviation(milliwatt/m2/nm)

        Real*4 dark_sig_est           ! old dark_meas

                         !Dark signals estimate

                         !estimate of the closest related dark 

                         !signals for which 

                         !the current solar irradiance was adjusted.

        Real*4 alpha, beta, alpha_sun_error, beta_sun_error

                         ! alpha: SSPP Alpha Angle

                         !(circles, i.e. 1 circle = 360 degrees.)

                         !Pointing angle: alpha is zero when pointing

                         ! straight down at the earth and .50 straight

                         ! up away from the earth.

                         !beta: SSPP Beta Angle (circles)

                         !Pointing angle: When SSPP is pointed at the

                         ! sun,the SSPP beta angle is the same as the

                         ! solar beta angle.  When flying forward,

                         ! beta is 0. when pointing in the direction

                         ! of UARS travel. When flying backward,

                         ! beta is 0. when pointing in the direction of

                         !UARS motion. Beta is .25 when pointed normal

                         ! to the orbit plane. 

                         !alpha_sun_error: SSPP Alpha Angle Error

                         !(circles, i.e. 1 circle = 360 degrees.)

                         !beta_sun_error:SSPP Beta Angle Error

                         !SSPP sun sensor measured error in beta angle

                         !pointing 

        Real*4 north_solar_pole !North solar pole(degrees)

                                !Position angle of the heliographic 

                                !North pole as

                                !viewed in the SSPP plane as computed

                                ! using UOAS

                                !OA_NORTH_SOLAR_POLE.

        Structure /sat_ephem_info_reduct/ uars

          Real*4 altitude   !UARS altitude

                            !Geodetic altitude of the UARS provided by 

                            !the UARS 

                            !Orbit Attitude Services.

          Real*4 latitude   !UARS latitude(degrees)

                            !Geodetic latitude of the UARS provided 

                            !by the UARS 

                            !Orbit Attitude Services.

          Real*4 longitude  !UARS longitude (degrees)

                            !Geodetic longitude of the UARS provided 

                            !by the UARS 

                            !Orbit Attitude Services.

          Real*4 tangent_pt_alt

                            !UARS to sun vector Earth Tangent Point

                            !altitude(km)

                            !Geodetic altitude of the UARS to sun 

                            !vector Earth tangent point based on the

                            !direction of SSPP pointing

                            !and provided by the UARS Orbit Attitude

                            !Services.

        End Structure 

      End Structure 

------------------------------------------------------------------------

   END INCLUDE FILE ACTIVITY_REDUCT_RECORD_DSR.INC

RECORD /Activity_Reduct_Record/ activity_frame

4.4.2 Level 1 Fortran Access Routine for Subtype 

Usage:

   CALL 

 ARGUMENT DESCRIPTION

 ARGUMENT LIST DESCRIPTION

 ARGUMENT           TYPE       I/O    DESCRIPTION

 --------           ----       ---    ----------------------------------

The calling routine must define the following record structure.

4.5 Level 1 C Software

4.5.1 Level 1 C Access Function Routine for Subtype SOLAR_SCANS (fth_r_susim_l1_solar_scans_c)

This C function routine reads the SUSIM level 1 data (subtype SOLAR_SCANS). Aside form opening the file, it is the only routine users need to call for reading the files. 

It is important to note that the data record structures are based on the original data files. To ensure that the variable alignments remain consistent with the data file structures, users must include the pragma directive as follows:

       #pragma pack(1)

Usage:

    void fth_r_susim_l1_solar_scans_c(FILE *ifp,int rlen,int irec_rd,

     struct activity_reduct_record *activity_frame,int* ios)

 Argument list description

 NAME              TYPE           I/O     DESCRIPTION

 -------           -------        ---     ------------------------------

 FILE *ifp         file pointer   I       file pointer to input file

 rlen              int            I       record length in 4-byte words

                                          (value should be 18)

 irec_rd           int            I       record number to read.

                                          Nominally, the file is read 

                                          sequentially beginning

                                          with record 1

 activity_frame    record         O       data record read

                   structure              

 ios               int            O       read status. 0:no error

The structure of the activity record is as follows. See the SUSIM documentation and the corresponding Fortran description above for motre details.

struct activity_reduct_record

{

        int obc_time[2];

        short int time;

        char iop_index;

        char set_index;

        char seq_index;

        char task_id;

        char detector;

        char d2_lamp;

        char det_d2;

        char calibrator;

        char instr_state[6];

        char rule_int_pt_sp_saa; 

        char sspp_mode_and_target;

        float encoder_pos;

        float wavelength;

        char step_size;           /* ! add 256 to it if it is negative*/

        float signal;

        short int number_signals;

        float signal_std;

        float dark_sig_est;           /*! old dark_meas*/

        float alpha, beta, alpha_sun_error, beta_sun_error;

        float north_solar_pole;

        struct sat_ephem_info_reduct

        {

          float altitude;

          float latitude;

          float longitude;

          float tangent_pt_alt;

        } uars;

} activity_frame;

4.5.2 Level 1 C Access Array Transform Routines

4.6 Level 2 Fortran Software

The required software consists of one routine which users can call to read the level 2 file of subtypes SCANS_MID, SCANS_PROF, and SCANS_PARAM. Additional software in the form of a sample driver, a file name generation routine, and a file open routine are provided and described in the Appendix. A procedure is also provided to link the driver and routines. The resulting executable can be used to read the data and write selected portions to an output file for analysis or plots.

4.6.1 Level 2 Fortran File Access Routine for Subtypes SCANS_MID, SCANS_PROF, SCANS_PARAM (fth_r_susim_l2_all_str)
Routine fth_r_susim_l2_all_str (file fth_r_susim_l2_all_str.for) can be used to read level 2 files of subtype SCANS_MID, SCNAS_PROF, SCANS_PARAM.

Usage:

   CALL fth_r_susim_l2_all_str (LUN_RD,IREC,

     & sfdu_mid,activity,IOS_RD1)

 ARGUMENT LIST DESCRIPTION

 ARGUMENT         TYPE       I/O    DESCRIPTION

 --------         ----       ---    ---------------------------------

 LUN_RD           I*4        I      LOGICAL UNIT NUMBER OF INPUT

                                    FILE

 IREC             I*4        I      RECORD NUMBER TO READ.

                                    NOMINALLY, RECORDS ARE READ 

                                    SEQUENTIALLY.

                                    DIRECT ACCESS IS USED TO PRESERVE

                                    CONSISTENCY BETWEEN COMPILERS

 sfdu_mid         RECORD     O      SFDU (HEADER) RECORD READ

                  STRUCTURE         SEE BELOW FOR Structure

                                    /sfdu_level2/

 activity         RECORD     O      DATA RECORD READ

                  STRUCTURE         SEE BELOW FOR Structure

                                    /Activity_Reduct_Record/

 IOS_RD1          I*4        O      FORTRAN READ STATUS. 0:NO ERROR

------------------------------------------------------------------------

      SUSIM ASSIGNS UCSS_SFDU_LABLREC TO PFA_SFDU_LABLREC

      SO WE INCLUDE PFA_SFDU_LABLREC INSTEAD UCSS_SFDU_LABLREC

PFA_SFDU_LABLREC.INC CAN BE FOUND IN 

 CSC$DISK:[UCSSPROD.UCSS_INC] AS WELL AS IN SUSIM DIRECTORY.

       FILE UCSS_SFDU_LABLREC.INC DOES NOT EXIST. 

------------------------------------------------------------------------

      BEGIN INCLUDE FILE PFA_SFDU_LABLREC/UCSS_SFDU_LABLREC

------------------------------------------------------------------------

C**  Include file name:  PFA_SFDU_LABLREC.INC

C**

C**  Purpose:  This include file defines the record layout of 

C**            the SFDU label. 

C** 

C**

C**      This is the structure of the SFDU label for UARS level-3a data files 

C**      as defined in the Programmer's Guide, Appendix E.

   STRUCTURE /SFDU_LABEL_STRUCTURE/

    CHARACTER*4 control_authority_id  !control authority for UARS data

    CHARACTER*1 version_id            !version identifier

    CHARACTER*1 class_id              !class identifier

    CHARACTER*2 spare                 

    CHARACTER*4 data_descriptive_rec_id !id for data in rest of file

    CHARACTER*8  ascii_length           !length in bytes of rest

   END STRUCTURE

   Structure /sfdu_level2/

     Record /sfdu_label_structure/ label

       Structure /sfdu_inner_header/ value

            Record /sfdu_label_structure/ label

            Character*32 value

       End Structure

   End Structure

   RECORD /sfdu_level2/ sfdu_mid

4.6 Level 2 C Software 

The required software consists of one routine that optionally reads the header record, a supplemental header record, or a data record.  

4.6.1 Level 2 C File Access Routine for Subtypes SCANS_MID,SCANS_PROF, and SCANS_PARAM (fth_r_susuim_l2_all_str_c)

Function fth_r_susim_l2_all_str_c (file fth_r_susim_l2_all_str_c.c) can be used to read the level 2 data files. Because the data records are organized in the same way for subtypes SCANS_MID, SCAN_PROF, and SCANS_PARAM, the same function can be used to access all three kinds of files.

It is important to note that the data record structures are based on that written by SUSIM personnel. To ensure that the variable alignments remain consistent with the data file structures, users should include the pragma directive as follows:

      #pragma pack(1)

Usage:

 fth_r_susim_l2_all_str_c (FILE *ifp,int rlen,int irec_rd,

     struct sfdu_level2 *sfdu_mid,

     struct activity_reduct_record *activity,int* ios)

/* Argument list description:

 NAME              TYPE           I/O     DESCRIPTION

 -------           -------        ---     ------------------------------

 FILE *ifp         file pointer   I       file pointer to input file

 rlen              int            I       record length in 4-byte words

                                          (value should be 18)

 irec_rd           int            I       record number to read.

                                          Nominally, the file is read 

                                          sequentially beginning

                                          with record 1

 sfdu_mid          record         O       sfdu record read (when input

                   structure              irec_rd eq 1)

 activity          record         O       data record read (when input

                   structure              irec_rd gt 1)

 ios               int            O       read status. 0:no error

struct sfdu_label_structure

{

  char control_authority_id[4];  /*!control authority for uars data*/

  char version_id;            /*!version identifier*/

  char class_id;              /*!class identifier*/

  char spare[2];                 

  char data_descriptive_rec_id[4]; /*!id for data in rest of file*/

   union tmp11

     {

       char ascii_length[8];  /*!length in bytes of rest*/

                             /* ! of file in ascii*/

       int  binary_length[2]; /*!length in bytes of rest*/

                             /* ! of file in binary*/

     } length;

};

/*--------------------------------------------------------------------*/

/* end include file pfa_sfdu_lablrec.i*/

/*--------------------------------------------------------------------*/

struct sfdu_level2

 {

    struct sfdu_label_structure label;

    struct sfdu_inner_header

      { 

        struct sfdu_label_structure label;

        char value[32];

      } value;

 } sfdu_mid;     

struct activity_reduct_record

{

        int obc_time[2];

        short int time;

        char iop_index;

        char set_index;

        char seq_index;

        char task_id;

        char detector;

        char d2_lamp;

        char det_d2;

        char calibrator;

        char instr_state[6];

        char rule_int_pt_sp_saa; 

        char sspp_mode_and_target;

        float encoder_pos;

        float wavelength;

        char step_size;           /* ! add 256 to it if it is negative*/

        float signal;

        short int number_signals;

        float signal_std;

        float dark_sig_est;           /*! old dark_meas*/

        float alpha, beta, alpha_sun_error, beta_sun_error;

        float north_solar_pole;

        struct sat_ephem_info_reduct

        {

          float altitude;

          float latitude;

          float longitude;

          float tangent_pt_alt;

        } uars;

} activity;

Appendix: Additional software

Sample software that uses the file access software described above is described in this Appendix. It should be noted that the software described here is not a formal part of the required software package, and is provided only as a convenience to users. The software described below consists of sample drivers, and functions and routines that generate file names and open the files. These are provided in Fortran and C.

This software, combined with the access software described earlier in the main text, is self-contained, and can be linked into executables. Link procedures are provided and described below.

A.1 Additional Level 0 Fortran Software

A.1.1 Level 0 Fortran File Open Routine (opn_l0_file)

The Fortran routine opn_l0_file (file opn_l0_file.for) opens a UARS level 0 file with the proper attributes. It calls routine gen_l0_name (file gen_l0_name.for) to generate the needed filenames based on user-input values such as the instrument acronym, the subtype, the uars day, and the data version, as described above. For each data version, there is a cycle number that is greater than or equal to 1. Users need not know the cycle number as long as the variable ICYC_MAX is set to be larger than the actual cycle number of the file. A value of 10 for ICYC_MAX is usually large enough. Routine opn_l0_file will begin with cycle number 1 and will increment cycle numbers until a file is successfully opened or until ICYC_MAX is reached. The data version number and the cycle number are determined by production processing. The data version number corresponds to the software version that was used to generate the file, and the cycle number is incremented each time reprocessing was needed for the same file using the same software.   

Usage:

      CALL OPN_L0_FILE(INSTR,IUARS_DAY,IVER_IN,

     & ICYC_MAX,ITYPE,IN_RECL,ICYC,LUN,FLNAME,IVAR,IDIRECT,IOS)

 ARGUMENT LIST DESCRIPTION

 ARGUMENT      TYPE     I/0      DESCRIPTION

 --------      ----     ---      -------------------------------------

 INSTR         CH*12    I        INSTRUMENT ACRONYM. e.g.,

                                 claes, haloe, hrdi, isams, mls, pem,

                                 solstice, susima, susimb, windii,

                                 acrim,

                                 engineering, spacecraft, obc, quality

 IUARS_DAY     I*4      I        UARS DAY.

 IVER_IN       I*4      I        DATA VERSION.

 ICYC_MAX      I*4      I        MAXIMUM CYCLE NUMBER TO TRY.

 ITYPE         I*4      I        SET LAST 4 CHARACTERS OF INPUT FILE 

                                 NAME. 1: PROD

                                       2: BNBE

                                       3: BNLE

                                      -2: BVBE

                                      -3: BVLE

IN_RECL       I*4      I        RECORD LENGTH (WORDS) OF

                                 FILE IF FIXED LENGTH.

                                 IF VALUE IS GT 0 FILE IS OPENED

                                 AS WITH RECL KEYWORD SET TO VALUE OF 

                                 IN_RECL.

ICYC          I*4      I/O      IF 0 ON INPUT, ROUTINE WILL 

                                 TRY TO OPEN EXISTING FILE. CYCLES

                                 NUMBERS FROM 1 TO ICYC_MAX WIIL BE

                                 TRIED. IF EXISTING FILE IS FOUND,

                                 ICYC IS RETURNED. IF FILE NOT FOUND,

                                 ICYC IS SET BACK TO 0.

 LUN           I*4      I/O      LOGICAL UNIT NUMBER OF FILE.

                                 IF NOT ZERO ON INPUT, THE INPUT VALUE

                                 IS USED TO OPEN THE FILE.

                                 IF ZERO ON INPUT, LUN WILL

                                 BE SET TO 95 (INPUT) IF ICYC IS 0,

                                 AND TO 96 (OUTPUT) IF ICYC IS NOT 0.

 FLNAME        CH*50    O        FLNAME OF FILE.


 IVAR          I*4      I        IF O, OPEN FOR FIXED RECORD LENGTH  

                                 IF -1, OPEN WITH KEYWORD RECORDTYPE

                                 SET TO 'SEGMENTED' 

                                 IF -2, OPEN WITH KEYWORD RECORDTYPE

                                 SET TO 'VARIABLE' 

 IDIRECT       I*4      I        INPUT 0:SEQUENTIAL ACCESS,1:DIRECT

 IOS           I*4      O        STATUS.

A.1.2 Level 0 Fortran File Name Routine (gen_l0_name)

Routine gen_l0_name (file gen_l0_name.for) generates the correct file name based on user-input values of the instrument and subtype acronyms, the UARS day number, and the file data version.

This routine is called only by opn_l0_file, and users only need to link this routine.

Usage:

      CALL GEN_L0_NAME(INSTR,IUARS_DAY,FNAME,IVER,ICYC,

     & ITYPE)

 ARGUMENT DESCRIPTION:

 ARGUMENT      TYPE     I/0      DESCRIPTION

 --------      ----     ---      ---------------------------------------

 INSTR         CH*12    I        INSTRUMENT ACRONYM.

 IUARS_DAY     I*4      I        UARS DAY.

 IVER          I*4      I        DATA VERSION.

 ICYC          I*4      I        DATA VERSION.

 FNAME         CH*50    O        filename

A.1.3 Level 0 Sample Fortran Driver and Link Procedure

An example of a driver that uses fth_readl0 (file fth_readl0.for) to read all types of level 0 files is provided and given in file

     get_l0.for

The command/script file

     get_l0.com

can be used to link and generate an executable named

     get_l0.exe

For linking, in addition to the sample driver (file get_l0.for), the routines fth_readl0 (file fth_readl0.for), opn_l0_file (file opn_l0_file.for), gen_l0_name (file gen_l0_name.for), swap16 (file swap16.for), swap32 (file swap32.for), and swap64 (file swap64.for), (as noted earlier) are needed as well.

Upon running program get_l0.exe interactively, the following prompt appears on the screen:

ENTER FILE TYPE NUMBER

 1:CLAES,2:HALOE,3:HRDI,4:ISAMS,5:MLS,6:PEM

 7:SOLSTICE,8:SUSIMA,9:SUSIMB,10:WINDII,11:ACRIM

 12:ENGINEERING,13:SPACECRAFT,14:OBC,15:QUALITY

ENTER UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER'

(-1 FOR BOTH TO DO ALL DATA RECORDS)

DATA VERSION NUMBER,WRITE ASCI FILE[0/1]

SWAP BYTES[0/1]

An example of a user input to this prompt is

12 130 1 10 2 1 1

The different input variables are separated with blanks. As described in the prompt, the first input, '12', selects the ENGINEERING file to open and read. The 130 selects the UARS day to read (there is one file for each day). Recall that UARS day number 1 is September 12, 1991, and January 1 1992 corresponds to UARS day 112. The '1 10' selects the first and last data records wanted (in this case the first 10 records). The next input, '2', is the file data version number. The next to last input, '1', means that an output file (in ASCII) of selected data will be written. The last input, also '1', is used for big endian computers, and a value of '0' is input for little endian systems.

With the above input, the program will read the first 10 data records of the level 0 data file named

     engineering_l0_d0130.v0002_c01_prod

and write a text file named

     engineering_l0_d0130.v0002_c01_asci

containing certain portions of data from the 10 selected records.

UARS file name conventions have been described in Section 1.1. Here, the output file name is the same as the input level 0 file except for the last 4 characters. In the above example, the user need not know the cycle number because the software first tries cycle number 1 and if needed, increments the cycle number until the file is found, or until a preset maximum is reached. This is the value of icyc_max and is currently set to 5. See the previous subsection on routine OPN_L0_FILE for more details.

A.2 Additional Level 0 C Software

A.2.1 Level 0 C File Open Function Routine (opn_l0_file_c)

The C function routine opn_l0_file_c (file opn_l0_file_c.c) opens a UARS level 0 file with the proper attributes. It calls gen_l0_name_c (file gen_l0_name_c.c) to generate the file name based on user-input values such as the acronyms for instrument and parameter, the uars day number, and the data version number, which have been described above. The use of this function parallels that for the Fortran version, which is described in Section A.1.1.

Usage:

   void opn_l0_file_c(char *instr,int iuars_day,int iver_in,

         int icyc_max,int itype_rd,int in_recl,int *icyc,FILE **fp_rd,

         char *flname_rd,int *ios_rd);

   opn_l0_file_c(instr,iuars_day,iver_in,icyc_max,itype_rd,

                in_recl,&icyc,&fp_rd,flname_rd,&ios_rd);

   arguement    type    i/0     description

------------------------------------------------------------------------

   instr        ch*12   i       instrument acronym.

   iuars_day    i*4     i       uars day. (e.g., sept 12, 1991 is

                                uars day 1, jan 1 1992 is uars

                                day 112; jan 1 1993 is uars day 478)

   iver_in      i*4     i       data version.

   icyc_max     i*4     i       maximum cycle number to try.

   itype        i*4     i       set last 4 characters of input file

                                name.

                                1: prod

                                2: bnbe

                                3: bnle

                                4: asci

   in_recl      i*4     i       record length (bytes) of file if fixed

                                length.

   icyc         i*4     i/o     nominally 0 on input.

                                if 0 on input, routine will assume an

                                existing file. cycles number will be

                                incremented from 1 to icyc_max until

                                success. if existing file is found,

                                icyc is returned.

   ifp          FILE**  o       pointer to file pointer

   flname       ch*50   o       flname of file.

   ios          i*4     o       status of open.

A.2.2 Level 0 C File Name Function Routine (gen_l0_name_c)

Function routine gen_l0_name_c (file gen_l0_name_c.c) generates the correct file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version. This routine is called only by opn_l0_file_c, and users only need to link this routine.

A.2.3 Level 0 Sample C Driver and Link Procedure

An example of a driver that uses mcb_readl0_c to read all types of level 0 files is provided and given in file

            get_l0_c.c

The command/script file

            cclink_get_l0.com

can be used to compile, link, and generate an executable named

            get_l0_c.x 

For linking, in addition to the sample driver (file get_l0_c.c), the functions mcb_readl0_c (file mcb_readl0_c.c), opn_l0_file_c (file opn_l0_file_c.c), gen_l0_name_c (file gen_l0_name_c.c), swap16_c (file swap16_c.c), swap32_c (file swap32_c.c), and swap64_c (file swap64_c.c) (noted earlier) are needed as well.

Upon running program get_l0_c.x interactively, the following prompt appears on the screen:

ENTER INSTRUMENT NUMBER

 1:CLAES,2:HALOE,3:HRDI,4:ISAMS,5:MLS,6:PEM

 7:SOLSTICE,8:SUSIMA,9:SUSIMB,10:WINDII,11:ACRIM

 12:ENGINEERING,13:SPACECRAFT,14:OBC,15:QUALITY

ENTER UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER

(-1 FOR BOTH TO DO ALL DATA RECORDS)

DATA VERSION NUMBER

WRITE ASCI FILE (0=NO,1=YES,2=to SCREEN)

SWAP BYTES (0=NO,1=YES)

An example of a user input to this prompt is

8 486 1 3 2 1 1

The different input variables are separated with blanks. As described 

in the prompt, the first input, '8', selects the SUSIMA file to 

open and read. The '486' selects the UARS day to read (there is one file 

for each day). Recall that UARS day number 1 is September 12, 1991, and 

January 1 1992 corresponds to UARS day 112. The '1 3' selects the first 

and last data records wanted (in this case the first 3 records). The 

next input, '2', is the file data version number. The next to last input, '1', means that an ASCII output file of selected data will be written. The last input, also '1', is used for big endian computers, and a value of '0' is input for little endian systems.

With the above input, the program will read the first 3 data records of 

the level 0 data file named

     susima_l0_d0486.v0002_c01_prod

and write a text file named

     susima_l0_d0486.v0002_c01_asci

containing certain portions of data from the 3 selected records.

UARS file name conventions have been described in Section 1.1. Here, 

the output file name is the same as the input level 0 file except for 

the last 4 characters. In the above example, the user need not know the 

cycle number because the software first tries cycle number 1 and if 

needed, increments the cycle number until the file is found, or until a 

preset maximum is reached. This is the value of icyc_max and is currently set to 5. See the previous subsection on routine opn_l0_file_c for more details.

A.3 Additional Level 1 Fortran Software. 

A.3.1 Level 1 Fortran File Open Routine (opn_l1_file)

The Fortran routine opn_l1_file (file opn_l1_file.for) opens a UARS level 1 file with the proper attributes.  It calls routine gen_l1_name (file gen_l1_name.for) to generate the needed file name based on user-input values such as acronyms for the instrument and parameter, the uars day, and the data version number. Details are the same as described above in Section A.1.1 for the opn_l0_file routine.   

An example of using this routine is given by the sample driver in file get_claes_l1_claes_ns.for noted above.

Usage:

   CALL OPN_L1_FILE(INSTR,PARAM,IUARS_DAY,IVER_IN,

     & ICYC_MAX,ITYPE_IN,IN_RECL,ICYC,LUN,FLNAME,IVAR,

     & IDIRECT,IOS)

Argument list description:

     ARGUMENT    TYPE    I/0      DESCRIPTION

------------------------------------------------------------

     INSTR       CH*12   I        INSTRUMENT ACRONYM.

     PARAM       CH*12   I        MEASURE PARAMETER.

     IUARS_DAY   I*4     I        UARS DAY. (E.G., SEPT 12,

                                  1991 IS UARS DAY 1, JAN 1

                                  1992 IS UARS DAY 112;

                                  JAN 1 1993 IS UARS DAY

                                  478)

     IVER_IN     I*4     I        DATA VERSION NUMBER.

     ICYC_MAX    I*4     I        MAXIMUM DATA CYCLE NUMBER

                                  TO TRY.

     ITYPE_IN    I*4     I        USED TO DETERMINE LAST 4

                                  CHARACTERS OF FILE NAME:

                                  0 OR 1: PROD

                                  2: BNBE

                                  3: BNLE

                                  4: ASCI

                                  ALSO USED FOR CONVERSION

                                  IF APPLICABLE.

                                  1: NOCONVERSION

                                  2: CONVERT = 'BIG ENDIAN'

                                  3: CONVERT = 'LITTLE

                                                ENDIAN'

     IN_RECL     I*4     I        RECORD LENGTH (WORDS) OF

                                  FILE IF FIXED LENGTH.

                                  IF VALUE IS GT 0 FILE IS

                                  OPENED WITH RECL KEYWORD

                                  SET TO VALUE OF IN_RECL.

                                  IF VALUE IS ZERO, FILE

                                  WILL BE OPENED WITHOUT

                                  RECL KEYWORD. AND

                                  DEFAULT IS USED. FOR 

                                  VARIABLE RECORDS,

                                  VALUES FOR VMS ARE:

                                  SEGMENTED:2048(BYTES)

                                  OTHERS:133

     ICYC        I*4     I/O      SHOULD BE NOMINALLY SET

                                  TO 0.

                                  IF 0 ON INPUT, ROUTINE

                                  WILL TRY TO OPEN EXISTING

                                  FILE. CYCLES NUMBERS FROM

                                  1 TO ICYC_MAX WIIL BE

                                  TRIED. IF EXISTING FILE IS

                                  FOUND,ICYC IS RETURNED. IF

                                  FILE NOT FOUND,

                                  ICYC IS INCREMENTED BY 1

                                  UP TO ICYC_MAX.

                                  IF NOT ZERO ON INPUT, FILE

                                  IS ASSUMED NOT TO EXIST

                                  AND A NEW FILE IS OPENED

                                  USING THE VALUE IF ICYC.

     LUN         I*4     I/O      LOGICAL UNIT NUMBER OF

                                  FILE.

                                  IF NOT ZERO ON INPUT, THE

                                  INPUT VALUE

                                  IS USED TO OPEN THE FILE.

                                  IF ZERO ON INPUT, LUN WILL

                                  BE SET TO 95 (INPUT) IF

                                  ICYC IS 0.

                                  AND TO 96 (OUTPUT) IF ICYC

                                  IS NOT 0.

     FLNAME      CH*50   O        FLNAME OF FILE.


     IVAR        I*4     I        IF O, OPEN FOR FIXED

                                  RECORD LENGTH,

                                  AND IS THE CASE FOR CLAES. 

                                  IF -1, OPEN WITH KEYWORD

                                  RECORDTYPE SET TO

                                 'SEGMENTED'(VMS ONLY) 

                                  IF -2, OPEN WITH KEYWORD

                                  RECORDTYPE SET TO

                                  'VARIABLE' 

     IDIRECT     I*4     I        INPUT 0:SEQUENTIAL

                                  ACCESS,1:DIRECT.

                                  DIRECT IS APPLICABLE TO

                                  CLAES

     IOS         I*4     O        STATUS AFTER ATTEMPT TO

                                  OPEN.

A.3.2 Level 1 Fortran File Name Routine (gen_l1_name)

Routine gen_l1_name (file gen_l1_name.for) generates the correct file name based on user-input values of the instrument and subtype acronyms, the UARS day number, and the file data version number.

This routine is called only by opn_l1_file, and users only need to link this routine.

A.3.3 Level 1 Sample Fortran Driver and Link Procedure

An example of using FTH_R_SUSIM_L1_SOLAR_SCANS_STR.FOR is provided and given in file

     get_susim_l1_solar_scans_str.for.

The file 

     get_susim_l1_solar_scans_str.com 

can be used to link and generate an executable named

     get_susim_l1_solar_scans_str.exe

Upon running this executable interactively, the following prompt appears on the screen:

ENTER INSTR,PARAM(BOTH LWR CASE,SNGL QUOTES,PARAM IS DATA)

BEGIN UARS DAY,END UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER

(NEGATIVE TO DO ALL DATA RECORDS)

DATA VERSION

IN FILE TYPE (DEFAULT:0 FOR .PROD)

An example of a user input to this prompt is

'susim' 'solar_scans' 2564 2564 1 500 19 2

The different input variables are separated with blanks. The first string is the SUSIM instrument acronym, and the second is the subtype acronym. The '2564 2564' selects the begin and end UARS days to read (there is one file for each day). Here, only the file for UARS day 2564 is processed. UARS day number 1 is September 12, 1991, and January 1 1992 corresponds to UARS day 112. The '1 500' selects the first and last data records wanted (in this case the first 500 records). The '19' gives the file data version number, and the '2' is used for the file name generation (big endian).

With the above input, the program will read the first 500 data records of the level 1 data file named

     susim_l1_ssolar_scans_d2564.v0019_c01_bnbe

and write a text file  named

     susim_l1_ssolar_scans_d2564.v0019_c01_asci

containing certain portions of data from the 500 selected records.

A.4 Additional Level 1 C Software.

A.4.1 Level 1 C File Open Function (opn_l1_file_c)

The C function routine opn_l1_file_c (file opn_l1_file_c.c) opens a UARS level 1 file with the proper attributes.  It calls routine gen_l1_name_c (file gen_l1_name_c.c) to generate the filename based on input values such as acronyms for the instrument (i.e., claes), parameter (i.e., claes), uars day, and the data version number, which have been described previously. Details are the same as described above in Section A.1.1 for the opn_l0_file routine. 

Usage:

   opn_l1_file_c(char* instr,char* param,int iuars_day,

                 int iver_in,int icyc_max,int itype_in,

                 int in_recl,int* icyc,FILE** ifp,

                 char* flname,int* ios)

Argument list description:

argument    type      i/0    description

--------    ----      ---    -------------------------------

instr       char[12]  i      instrument acronym.

param       char[12]  i      measure parameter.

iuars_day   int       i      uars day. (e.g., sept 12, 1991

                             is uars day 1, jan 1 1992 is

                             uars day 112; jan 1 1993 is

                             uars day 478)

iver_in     int       i      data version.

icyc_max    int       i      maximum cycle number to try.

itype       int       i      set last 4 characters of input

                             file name.

                             1: prod

                             2: bnbe

                             3: bnle

                             4: asci

in_recl     int       i      record length (bytes) of file

                             if fixed length.

icyc        int       i/o    nominally 0 on input.

                             if 0 on input, routine will

                             assume an existing file. Cycles

                             number will be incremented from

                             1 to icyc_max until

                             success. if existing file is 

                             found,icyc is returned.

ifp         FILE**    o      pointer to file pointer

flname      char[50]  o      flname of file.

ios         int       o      status of open.

A.4.2 Level 1 C File Name Function (gen_l1_name_c) 

The function routine in file gen_l1_name_c.c generates the file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version. This routine is called only by opn_l1_file_c.c, and users only need to link this routine.

A.4.3 Level 1 Sample C Driver and Link Procedure

The file name containing the sample C driver is

   get_susim_l1_solar_scans_str_c.c

and the compile and link file name is

   get_susim_l1_solar_scans_str_c.com

Upon executing this script, an executable is created in  file

   get_susim_l1_solar_scans_str_c.exe

Use of this C program is similar to that for the corresponding Fortran program described earlier. Details are repeated here for convenience.

Upon running program 

   get_solstice_l1_solar_str_c.exe 

interactively, the following prompt appears on the screen:

enter instr,param(lwr case,no quotes)

begin,end uars day

enter first data record number, last data record number

(negative to do all data records)

data version

in file type (default:0 for .prod)

2:big endian,3:little endian

An example of a user input to this prompt is

susim solar_scans 2564 2564 1 500 19 2

The different input variables are separated with blanks. The first string is the SUSIM instrument acronym, the second is the subtype acronym. The '2564 2564' select the begin and end UARS days (there is one file for each day) to read. UARS day number 1 is September 12, 1991; January 1 1992 corresponds to UARS day 112. The input  '1 500' selects the first and last data records wanted (in this case the first 500 records). The '19' gives the file data version number, the '2' is used for the file name generation (2 denotes big endian).

With the above input, the program will read the first 500 data records of the level 1 data file named

   susim_l1_ssolar_scans_d2564.v0019_c01_bnbe

and write a text file  named

   susim_l1_ssolar_scans_d2564.v0019_c01_asci

containing certain portions of data from the 500 selected records.

A.5 Additional Level 2 Fortran Software 

A.5.1 Level 2 Fortran File Open Routine(opn_l2_file)

Routine opn_l2_file (file opn_l2_file.for) opens a UARS level 2 file with the proper attributes. It calls routine GEN_L2_NAME to generate the needed filename based on input values such as acronyms for the instrument and parameter, for the uars day number, and the data version number, which have been described above. Details are the same as described above in Section A.1.1 for the opn_l0_file routine. 

Usage:

   CALL OPN_L2_FILE(INSTR,PARAM,IUARS_DAY,IVER_IN,

     & ICYC_MAX,ITYPE_IN,IN_RECL,ICYC,LUN,FLNAME,IVAR,

     & IDIRECT,IOS)

Argument list description:

ARGUMENT    TYPE   I/0   DESCRIPTION

--------    ----   ---   -----------------------------------

INSTR       CH*12  I     INSTRUMENT ACRONYM.

PARAM       CH*12  I     MEASURE PARAMETER.

IUARS_DAY   I*4    I     UARS DAY. (E.G., SEPT 12, 1991 IS 

                         UARS DAY 1, JAN 1 1992 IS UARS

                         DAY 112; JAN 1 1993 IS UARS DAY 

                         478)

IVER_IN     I*4    I     DATA VERSION NUMBER.

ICYC_MAX    I*4    I     MAXIMUM DATA CYCLE NUMBER TO TRY.

ITYPE_IN    I*4    I     USED TO DETERMINE LAST 4 CHARACTERS

                         OF FILE NAME:

                         0 OR 1: PROD

                         2: BNBE

                         3: BNLE

                         4: ASCI

                         ALSO USED FOR CONVERSION IF

                         APPLICABLE.

                         1: NOCONVERSION

                         2: CONVERT = 'BIG ENDIAN'

                         3: CONVERT = 'LITTLE ENDIAN'

IN_RECL     I*4   I      RECORD LENGTH (WORDS) OF

                         FILE IF FIXED LENGTH.

                         IF VALUE IS GT 0 FILE IS OPENED

                         WITH RECL KEYWORD SET TO VALUE OF 

                         IN_RECL.

                         IF VALUE IS ZERO, FILE WILL BE

                         OPENED WITHOUT RECL KEYWORD, AND

                         DEFAULT IS USED. FOR VARIABLE

                         RECORDS,VALUES FOR VMS ARE:

                         DEFAULTS:SEGMENTED:2048(BYTES)

                         OTHERS:133

ICYC        I*4   I/O    SHOULD BE NOMINALLY SET TO 0.

                         IF 0 ON INPUT, ROUTINE WILL 

                         TRY TO OPEN EXISTING FILE. CYCLES

                         NUMBERS FROM 1 TO ICYC_MAX WIIL BE

                         TRIED. IF EXISTING FILE IS FOUND,

                         ICYC IS RETURNED. IF FILE NOT

                         FOUND,

                         ICYC IS INCREMENTED BY 1 UP TO 

                         ICYC_MAX.

                         IF NOT ZERO ON INPUT, FILE IS

                         ASSUMED NOT TO EXIST AND A NEW

                         FILE IS OPENED

                         USING THE VALUE IF ICYC.

LUN         I*4   I/O    LOGICAL UNIT NUMBER OF FILE.

                         IF NOT ZERO ON INPUT, THE INPUT

                         VALUE IS USED TO OPEN THE FILE.

                         IF ZERO ON INPUT, LUN WILL

                         BE SET TO 95 (INPUT) IF ICYC IS 0.

                         AND TO 96(OUTPUT) IF ICYC IS NOT 0.

FLNAME      CH*50 O      FLNAME OF FILE.

IVAR        I*4   I      IF  O, OPEN FOR FIXED RECORD LENGTH  

                         IF -1, OPEN WITH KEYWORD RECORDTYPE

                         SET TO 'SEGMENTED' 

                         IF -2, OPEN WITH KEYWORD RECORDTYPE

                         SET TO 'VARIABLE' 

IDIRECT     I*4   I      INPUT 0:SEQUENTIAL ACCESS,1:DIRECT

IOS         I*4   O      STATUS AFTER ATTEMPT TO OPEN.

A.5.2 Level 2 Fortran File Name Routine (gen_l2_name)

Routine gen_l2_name (file gen_l2_name.for) generates the correct file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version number. This routine is called only by OPN_L2_FILE.FOR, and users only need to link this routine.

A.5.3 Level 2 Sample Fortran Driver and Link Procedure

The file name of the sample driver is

   get_susim_l2_all_str.for

and the link file is given in

   get_susim_l2_all_str.com

Execution of the link file produces an executable in file 

   get_susim_l2_all_str.exe

Upon running the executable interactively, the following prompt appears on the screen:

ENTER INSTR,PARAM(BOTH LWR CASE,SNGL QUOTES,PARAM IS DATA)

BEGIN UARS DAY,END UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER

(NEGATIVE TO DO ALL DATA RECORDS)

DATA VERSION

IN FILE TYPE (DEFAULT:0 FOR .PROD)

An example of a user input to this prompt is

'susim' 'scans_mid' 2564 2564 1 500 19 2

The different input variables are separated with blanks. The first string is the solstice instrument acronym, the second is the subtype acronym. The '2564 2564' selects the begin and end UARS days to read (there is one file for each day). UARS day number 1 is September 12, 1991; January 1 1992 corresponds to UARS day 112. The '1 500' selects data records 1 to 500 to read. The '19' gives the file data version number, the '2' is used for the file name generation (2 for big endian).

With the above input, the program will read the level 2 data file named

   susim_l2_sscans_mid_d2564.v0019_c01_bnbe

and write a text file 

   susim_l1_sscans_mid_d2564.v0019_c01_asci

containing certain portions of data from the selected records. This program can be used for subtypes scans_prof and scans_param as well by entering then as the subtypes when running the program.

A.6 Additional Level 2 C Software

A.6.1 Level 2 C File Open Code (opn_l2_file_c)

The C function routine opn_l2_file_c (file opn_l2_file_c.c) opens a UARS level 2 file with the proper attributes.  It calls function gen_l2_name_c (file gen_l2_name_c.c) to generate the file name based on input values such as acronyms for the instrument and the parameter, for the uars day number, and the data version number, which have been described above. Details are the same as described above in Section A.1.1 for the opn_l0_file routine. 

Usage:

   opn_l2_file_c(char* instr,char* param,int iuars_day,int

      iver_in,int icyc_max,int itype_in,int in_recl,int*

      icyc,FILE** ifp,char* flname,int* ios)

Argument list description:

argument        type      i/0     description

--------        ----      ---     --------------------------

instr           char[12]  i       instrument acronym.

param           char[12]  i       measure parameter.

iuars_day       int       i       uars day. (e.g., sept 12,

                                  1991 is uars day 1, jan 1

                                  1992 is uars day 112;

                                  jan 1 1993 is uars day

                                  478)

iver_in         int       i       data version.

icyc_max        int       i       maximum cycle number to

                                  try.

Itype           int       i       set last 4 characters of

                                  input file name.

                                  1: prod

                                  2: bnbe

                                  3: bnle

                                  4: asci

in_recl         int       i       record length (bytes) of

                                  file if fixed length. 

icyc            int       i/o     nominally 0 on input.

                                  if 0 on input, routine

                                  will assume

                                  an existing file. Cycles

                                  number will be incremented

                                  from 1 to icyc_max until

                                  success. if existing

                                  file is found, icyc is

                                  returned. 

ifp             FILE**    o       pointer to file pointer

flname          char[50]  o       flname of file.

ios             int       o       status of open.

A.6.2 Level 2 C File Name Function (gen_l2_name_c)

Function gen_l2_name_c (file gen_l2_name_c.c) generates the correct file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version. This routine is called only by opn_l2_file_c.c, and users only need to link this routine.

A.6.3 Level 2 Sample C Driver and Link Procedure

A sample driver to use the above functions is provided. The file name of the driver is

   get_susim_l2_all_str_c.c

and the compile and link file is given in

     get_susim_l2_all_str_c.com

Execution of  the link file produces an executable in file 

     get_susim_l2_all_str_c.exe

Use of this C program is similar to that for the corresponding Fortran program described earlier. Details are repeated here for convenience.

Upon running the executable interactively, the following prompt appears on the screen:

enter instr,param(lwr case,no quotes)

begin,end uars day

enter first data record number, last data record number

(negative to do all data records)

data version

in file type (default:0 for .prod)

2:big endian,3:little endian

An example of a user input to this prompt is

susim scans_mid 2564 2564 1 500 19 2

The different input variables are separated with blanks. The first string is the solstice instrument acronym, the second is the subtype acronym. The input  '2564 2564' selects the begin and end UARS days to read (there is one file for each day). UARS day number 1 is September 12, 1991 January 1 1992 corresponds to UARS day 112. The '1 10' selects data records 1 to 500 to read. The '19' gives the file data version number, the '2' is used for the file name generation (big endian).

With the above input, the program will read the level 2  ozone data file named

   susim_l2_sscan_mid_d2564.v0019_c01_bnbe

and write a text file 

   susim_l2_sscans_mid_d2564.v0019_c01_asci

containing certain portions of data from the selected records.

Program get_susim_l2_all_str.exe can also be used for subtypes scans_prof and scans_param by entering them as input for the subtype when running the program.

PAGE  
1

