DRAFT / SSAI

November 1, 2002

DRAFT

This is a work-in-progress document describing the access of level 0, level 1, and level 2 data from the Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) instrument, which is part of a complement of instruments on the Upper Atmosphere Research Satellite (UARS). SOLSTICE primarily measures the solar spectral irradiance in the ultraviolet spectral region. Originally, the data were (are) generated for computer systems compatible with the Compaq (Digital Equipment Corporation (DEC)) VAX/Alpha computers running under the VMS operating system. The following describes those data that are converted to be compatible with Silicon Graphics Incorporated (SGI) computer systems running under IRIX. They are consequently also compatible with the facilities of the GSFC Distributed Active Archive Center (DAAC). The following also describes software for the access of the converted data files.

SSAI

41.0 Introduction.

1.1 Data Products.
4
1.1.1 Level 0 Data Products and File Names
4
1.1.2 Level 1 Data Products.
5
1.1.3 Level 2 Data Products
5
1.2 Software Products.
5
1.2.1. Level 0 Software
6
1.2.2 Level 1 Software
6
1.2.3 Level 2 Software
6
1.3 Additional Software
6
1.3.1 Additional level 0 Software
7
1.3.2 Additional Level 1 software
7
1.3.3 Additional level 2 Software
8
2.0 Related Documentation
8
3.0 SOLSTICE Files and Data Structures
9
3.1 Level 0 Files and Data Structures
9
3.2 SOLSTICE Level 1 File and Data Structure
9
3.3 SOLSTICE Level 2 File and Data Structure
10
4.0 Access Software
10
4.1 Programming Considerations.
10
4.1.1 Arrays.
10
4.1.2 Fill Data.
11
4.2 Level 0 Fortran Software
11
4.2.1 Fortran Access Routine to Read Level 0 Data (fth_readl0)
11
4.3 Level 0 C Software
12
4.3.1 C Function Routine to Read Level 0 Data (mcb_readl0_c)
12
4.4 Level 1 Fortran Software
13
4.4.1 Level 1 Fortran Access Routine for Subtype SOLAR (fth_r_solstice_l1_solar_str)
13
4.4.2 Level 1 Fortran Access Routine for Subtype STELLAR (fth_r_solstice_l1_stellar_str)
16
4.5 Level 1 C Software
18
4.5.1 Level 1 C Access Function Routine for Subtype SOLAR (fth_r_solstice_l1_solar_str_c)
18
4.5.2 Level 1 C Access Function Routine for Subtype STELLAR (fth_r_solstice_l1_stellar_str_c)
23
4.6 Level 2 Fortran Software
24
4.6.1 Level 2 Fortran File Access Routine for Subtype SOLAR
24
4.6.2 Level 2 Fortran Access routines for Subtype STELLAR
28
4.7 Level 2 C Software
32
4.7.1 Level 2 C File Access Routine for Subtype SOLAR
32
4.7.2 Level 2 C File Access Routine for Subtype STELLAR
35
Appendix: Additional Software
39
A.1 Additional Level 0 Fortran Software
39
A.1.1 Level 0 Fortran File Open Routine (opn_l0_file)
39
A.1.2 Level 0 Fortran File Name Routine (gen_l0_name)
40
A.1.3 Level 0 Sample Fortran Driver and Link Procedure
41
A.2 Additional Level 0 C Software
42
A.2.1 Level 0 C File Open Function Routine (opn_l0_file_c)
42
A.2.2 Level 0 C File Name Function Routine (gen_l0_name_c)
43
A.2.3 Level 0 Sample C Driver and Link Procedure
43
A.3 Additional Level 1 Fortran Software.
44
A.3.1 Level 1 Fortran File Open Routine (opn_l1_file)
44
A.3.2 Level 1 Fortran File Name Routine (gen_l1_name)
46
A.3.3 Level 1 Sample Fortran Driver and Link Procedures
46
A.4 Additional Level 1 C Software.
47
A.4.1 Level 1 C File Open Function (opn_l1_file_c)
47
A.4.2 Level 1 C File Name Function (gen_l1_name_c)
48
A.4.3 Level 1 Sample C Driver
49
A.5 Additional Level 2 Fortran Software
50
A.5.1 Level 2 Fortran File Open Routine (opn_l2_file)
50
A.5.2 Level 2 Fortran File Name Routine (gen_l2_name)
51
A.5.3 Level 2 Sample Fortran Driver and Link Procedure
52
A.6 Additional Level 2 C Software
53
A.6.1 Level 2 C File Open Routine opn_l2_file_c.
53
A.6.2 Level 2 C File Name Routine gen_l2_name_c
54
A.6.3 Level 2 Sample C Driver and Link Procedure
54

1.0 Introduction.

This document describes the access of data from the Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) instrument, which is part of a complement of instruments on the Upper Atmosphere Research Satellite (UARS). SOLSTICE primarily measures the solar spectral irradiance in the ultraviolet spectral region. SOLSTICE also measures UV radiation from early-type stars for calibration purposes. Currently, this document applies to CLAES level 0, level 1, and level 2 data files that have been converted to be compatible with Silicon Graphics computers running under IRIX. The converted files are also compatible with the facilities of the NASA GSFC Distributed Active Archive Center (DAAC). The original files were created by UARS production processing running under the Compaq (Digital Equipment Corporation (DEC)) VMS operating system, on the UARS Central Data Handling Facility (CDHF). Corresponding activities for the UARS instrument calibration data will be included at a later date. The conversion of UARS level 3 data is not part of this activity.

The software that does the actual conversion of the original files is also not part of this description. The following describes the converted files and the software that are provided to access the converted files. Routines to read the converted file are provided in both Fortran and C. The original data were produced using Fortran code.

1.1 Data Products.

Data products consist of the various levels of SOLSTICE data. Basically, the level 0 data are the telemetry data that have been decommutated and stored. Level 1 data include sorted data, while level 2 data are products that are in scientific units suitable for analysis. The data files within a data level may be further divided into subtypes, such as the specific parameter(s) measured. As described in more detail below, file names are based on the data level, on the data type (subtype), and on the day of year, among other things. Examples of subtypes are solar and stellar.

1.1.1 Level 0 Data Products and File Names

Nominally, there are 15 types of UARS level 0 files for each day. Of these, 5 files are pertinent to SOLSTICE. Examples are as follows

 solstice_l0_d2370.v0002_c01_prod

 engineering_l0_d1101.v0002_c01_prod

 spacecraft_l0_d2373.v0002_c01_prod

 obc_l0_d1673.v0002_c01_prod

 quality_l0_d1644.v0002_c01_prod

The UARS level 0 file name convention begins with the type acronym (e.g., solstice, engineering,...), followed by the level(0). Next is the UARS day number(e.g.,2370; September 12, 1991 corresponds to UARS day number 1, January 19 1992 is UARS day 130). This is followed by the data version number (0002), and then by the cycle number (01). The data version number corresponds to the software that produces the data, and the data cycle number is determined by the UARS level 0 processing. For each data version, there is a cycle number that is nominally 1. If reprocessing is needed for the same version, the cycle is incremented. The most recent data correspond to the largest version and cycle numbers. The last four characters of the file name are always 'PROD'.

In the above, file SOLSTICE_L0_D2370.V0002_C01_PROD is the SOLSTICE level 0 data for UARS day 2373, while the other 4 types of files contain complementary flight data.

1.1.2 Level 1 Data Products.

There are two types of SOLSTICE level 1 (subtypes SOLAR and STELLAR) data files that are converted and archived. Nominally the files are generated on a daily basis and there is one file for subtype for each day. Typical file names are

 solstice_l1_ssolar_d0120.v0007_c01_bnbe

 solstice_l1_sstellar_d0120.v0007_c01_bnbe

The UARS level 1 file name convention begins with the instrument acronym (SOLSTICE), followed by the level (L1), which in turn is followed by the subtype (SSOLAR, SSTELLAR). Next is the UARS day number (D, e.g., September 12, 1991 corresponds to UARS day number 1, and January 1 1992 is UARS day 112) and the data version number (V0007), followed by the cycle number(C01). The last four characters are 'PROD' as originally generated on the UARS CDHF, but have been replaced by 'BNBE' to denote that they have been converted.

1.1.3 Level 2 Data Products

There are 2 types of SOLSTICE level 2 data (subtypes SOLAR and STELLAR) files that are converted and archived. Nominally the files are generated on a daily basis and there is one file for each day for each subtype. Typical file names are

 solstice_l2_ssolar_d0120.v0004_c01_bnbe

 solstice_l2_sstellar_d0120.v0004_c01_bnbe

The file name convention is similar to that for level 1 files, described above.

1.2 Software Products.

The software products are divided into required software and additional products. The required software consists of access functions/routines in both Fortran and C that can be used to read the files. Additional software are those which are provided as a convenience for the user and is not formally part of this software package. Examples of additional software are sample drivers that use the required software, and routines that generate the proper file names and opens the files. Additional software are described in the Appendix.

The names of the software modules are summarized next. Details are given in later sections.

1.2.1. Level 0 Software

The following routine/function can be used to read each of the 5 level 0 files listed above. File names are given in parenthesis.

Routine name Description

(file name)

------------ -----------

fth_readl0 Fortran routine to read level 0 files of

(fth_readl0.for) all types

mcb_readl0_c C code to read level 0 files of all types

(mcb_readlo_c.c)

1.2.2 Level 1 Software

Software is provided to read header and data records for each of the level 1 files listed above.

Routine name Description

(file name)

------------ -----------

fth_r_solstice_l1_solar_str Fortran routine to read level 1

(fth_r_solstice_l1_solar_str.for) data records of subtype SOLAR

fth_r_solstice_l1_stellar_str Fortran routine to read level 1

(fth_r_solstice_l1_stellar_str.for) data records of subtype STELLAR

fth_r_solstice_l1_solar_str_c C code to read level 1 data records (fth_r_solstice_l1_solar_str_c.c) of subtype solar
fth_r_solstice_l1_stellar_str_c C code to read level 1 data records

(fth_r_solstice_l1_stellar_str_c.c) of subtype STELLAR

1.2.3 Level 2 Software

Software is provided to read the SFDU header and the data records for SOLAR and STELLAR subtypes. The SFDU header is the same for both subtypes.

Routine name Description

(file name)

------------ -----------

fth_r_sfdu_str Fortran routine to read SFDU record

(fth_r_sfdu_str.for)

fth_r_sfdu_str_c C routine to read SFDU record

(fth_r_sfdu_str_c.c)

fth_r_l2_solar_str Fortran routine to read data record of

(fth_r_l2_solar_str.for) subtype SOLAR

fth_r_l2_solar_str_c C routine to read data record of

(fth_r_l2_solar_str_c.c) of subtype SOLAR

fth_r_l2_stellar_ns Fortran routine to read data record of

(fth_r_l2_stellar_ns.for) subtype STELLAR

fth_r_l2_stellar_str_c C routine to read data record of subtype

(fth_r_l2_stellar_str_c.c) STELLAR

1.3 Additional Software

As noted earlier, additional software are that which are provided as a convenience to users, but are not formally part of the access software. Here, the are listed for completeness. Details are given in the Appendix.

1.3.1 Additional level 0 Software

Routine/function name Description

(file name)

----------- -----------

get_l0 Fortran sample driver for using level 0

(get_l0.for) routines

opn_l0_file Fortran code to open level 0 files

(opn_l0_file.for)

gen_l0_name Fortran code to generate level 0 file names

(gen_l0_name.for)

get_l0_c C sample driver for using level 0

(get_l0_c.c) function routines

opn_l0_file_c C code to open level 0 files

(opn_l0_file_c.c)

gen_l0_name_c C code to generate level 0 file names

(gen_l0_name_c.c)

1.3.2 Additional Level 1 software

Routine Name Description

(file name)

----------- -----------

get_solstice_l1_solar_str Fortran sample driver for level 1

(get_solstice_l1_solar_str.for) software for subtype solar

opn_l1_file Fortran code to open a level 1 files

(opn_l1_file.for) with the proper attributes

gen_l1_name Fortran code to generate standard file

(gen_l1_name.for) names based on subtype, day, data

 version number

get_solstice_l1_stellar_str_c.c C sample driver for using level 1

(get_solstice_l1_stellar_str_c) software for subtype stellar

opn_l1_file_c C code to open level 1 files

(opn_l1_file_c.c) with the proper attributes

gen_l1_name_c C code to generate standard file names

(gen_l1_name_c.c) based on day number, subtype, data

 version.

1.3.3 Additional level 2 Software

Routine Name Description

(file name)

----------- -----------

get_claes_l2_main Fortran sample driver for level 2 software

(get_claes_l2_main.for)

opn_l2_file Fortran code to open level 2 files

(opn_l2_file.for)

gen_l2_name Fortran code to generate level 2 file names

(gen_l2_name.for) based on day number, subtype, version

get_claes_l2_main_c C sample driver for level 2 software

(get_claes_l2_main_c.c)

opn_l2_file_c C code to open level 2 files

(opn_l2_file_c.c)

gen_l2_name_c C code to generate level 2 file names

gen_l2_name_c.c) based on day number, subtype, version

2.0 Related Documentation
A general description of the scientific goals and the instrument is found in the following paper:

Solar-Stellar Irradiance Comparison Experiment 1. Instrument Design

and Operation, Rottman, G., Thomas N. Woods, and Thomas P. Sparn, J. Geophys. Res., 98, 10,667-10,677, June 20, 1993.

Related SOLSTICE documents are

a) SOLSTICE LEVEL 2 DATA DESCRIPTION AND STRUCTURE,

 version 2.4,15 September 1994

The contents are in file NURSSU05.DOC.

b) SOLSTICE WHOLE DATA SET DESCRIPTION,

 version 2.4, 15 September 1994

This document is contained in file NURSSU07.DOC

c) UARS CDHF SOFTWARE SYSTEM (UCSS) PROGRAMMER'S GUIDE TO

PRODUCTION SOFTWARE SUPPORT SERVICES, COMPUTER SCIENCES CORPORATION, FEBRUARY, 1993.

This document describes access routines for UARS data levels 0 and 3, but not for levels 1 and 2. However, there is still general information that may be useful to users. This document can be obtained from the UARS Program Assistance Center (PAC).

Currently, there is no documentation per se available for the SOLSTICE level 1 data.

3.0 SOLSTICE Files and Data Structures

3.1 Level 0 Files and Data Structures

Unlike the converted level 1 and level 2 files, the level 0 files are unchanged from the original VMS versions. The contents of level 0 files are mostly byte-oriented, and the relatively few data words that need to be converted are done so by the read routine that is provided and described below. Consequently, users should only use the included software for this purpose.

All Level 0 files contain fixed length records, and data access is direct. The record lengths for relevant file types are as follows

 TYPE RECORD LENGTH (BYTES)

 ---- ---------------------

 solstice 2532

 engineering 8256

 spacecraft 21568

 obc 14400

 quality 2532

For more details, refer to the document

 UARS CDHF SOFTWARE SYSTEM (UCSS) PROGRAMMER'S GUIDE TO PRODUCTION

 SOFTWARE SUPPORT SERVICES, COMPUTER SCIENCES CORPORATION,OCTOBER,1995.

The contents can be found in file

 UCSS_PG_OCT95.MEM

3.2 SOLSTICE Level 1 File and Data Structure

As noted above, examples of converted level 1 SOLSTICE files are files of subtypes SOLAR and STELLAR with typical file names as

 solstice_l1_ssolar_d0120.v0007_c01_bnbe

 solstice_l1_sstellar_d0120.v0007_c01_bnbe

The data file of subtype SOLAR is the primary Level 1 SOLAR product and is passed to the level 2 programs. The files consist of fixed length records written in binary. All files OF subtype solar have the same record length, namely, 18 words (a word is 4 bytes), and all files of subtype STELLAR have record lengths of 9 words. Data in the converted files appear in the same order and the same records as in the original VMS files, and direct access in reading the records can be used.

Currently, there is no available documentation per se the level 1 data.

3.3 SOLSTICE Level 2 File and Data Structure

Examples of level 2 files are

 solstice_l2_ssolar_d0120.v0004_c01_bvbe

 solstice_l2_sstellar_d0120.v0004_c01_bvbe

The level 2 files of subtypes SOLAR and STELLAR contain the solar and stellar irradiances respectively. The files consist of variable length records. Data in the converted files appear in the same order and the same records as in the original VMS files. Direct access can be used.

Documentation for level 2 data is contained in file .DOC?

4.0 Access Software

Software for accessing the data is provided in the form of Fortran routines and C functions. For consistency, because software is provided in both Fortran and C, and because some of the software are made to run under both IRIX and under VMS, the following name conventions are used for the software: a) file names for Fortran code end in '.for', and files written in C end in '.c'; b) link scripts and executable file names end in '.com' and '.exe', respectively.

4.1 Programming Considerations.

The converted files contain the same records and structures as the original files. Because the order and structure of the records have been preserved, the original SOLSTICE documentation remain applicable, but with the following issues in this section borne in mind

4.1.1 Arrays.

The indices of arrays that are read by Fortran routines begin with the same values as in the original VMS routines. Arrays that are read by C programs begin with index 0.

For multidimensional arrays, C and Fortran are different as to which index varies fastest (row major, row minor). The C access routines which are provided accounts for this, so that the various indices of the arrays have the same meaning for both C and Fortran routines, and conform to the original documentation.

4.1.2 Fill Data.

The original VMS files use an 'illegal floating point' number for fill data. This number in HEX is '8000'X. SOLSTICE does not use the illegal floating point for fill data, so the user need not take preventive measures to avoid unexpected aborts.

4.2 Level 0 Fortran Software
4.2.1 Fortran Access Routine to Read Level 0 Data (fth_readl0)

Because the level 0 data files are unchanged from the original VMS versions, users should use only fth_readl0 (file fth_readl0.for), or its C equivalent, for reading the level 0 data on systems which conform to the big endian addressing convention (e.g., SGI, SUN). The level 0 data files are essentially byte-oriented, and only the first 64 bytes of the data records (the data record header) need be converted. It was judged that this conversion should be done by the read routine. Record access is direct, and record 1 is the file label record (all ASCII) followed by data records. The first 64 bytes of each data record (the data record header) are mostly information in integer words, and is converted by the read software. The rest of each data record is byte-oriented.

Usage:

 CALL FTH_READL0(LUN_RD,IREC,IREC_LEN,L0_BUFF,

 & ISWAP,IOS_RD)

 ARGUMENT DESCRIPTION

 ARGUMENT TYPE I/O DESCRIPTION

 -------- ---- --- -----------------------------

 LUN_RD I*4 I LOGICAL UNIT OF INPUT FILE

 IREC I*4 I RECORD TO READ (1 OR GREATER)

 IREC_LEN I*4 I RECORD LENGTH IN BYTES

 claes 24640

 haloe 16448

 hrdi 19520

 isams 8256

 mls 10304

 pem 28736

 solstice 2532

 susima 8256

 susimb 8256

 windii 16448

 acrim 4160

 engineering 8256

 spacecraft 21568

 obc 14400

 quality 2532

 L0_BUFF CHAR*1 O BUFFER CONTAINING LEVEL 0 DATA

 (IREC_LEN)

 ISWAP I*4 I 0:FOR LITTLE ENDIAN COMPUTERS

 1:FOR BIG ENDIAN COMPUTERS

 IOS_RD I*4 O READ STATUS 0:NO ERROR

This routine calls 3 other routines that are used to convert from little endian to big endian standards, namely,

 swap32 (swap32.for)

 swap16 (swap16.for)

 swap64 (swap64.for)

The file names are in parenthesis). Users need not know how to call these routines explicitly as they are used only by fth_readl0.

4.3 Level 0 C Software

4.3.1 C Function Routine to Read Level 0 Data (mcb_readl0_c)
Because the level 0 data files are unchanged from the original VMS versions, users should use only mcb_readl0_c (file mcb_readl0_c.c), or its Fortran equivalent, for reading the level 0 data on systems which conform to the big endian addressing convention (e.g., SGI, SUN).

Usage:

void mcb_readl0_c(FILE *fp_rd,int irec,int in_recl_byte,

 signed char *l0_buff,int iswap,int *ios_rd);

 mcb_readl0_c(fp_rd,irec,in_recl_byte,&l0_buff[0],iswap,&ios_rd);

THIS ROUTINE READS THE UARS LEVEL 0 DATA. IT ASSUMES

 THAT THE DATA FILE CORRESPONDS TO THE ORIGINAL, VMS

 DATA FILES. IN ORDER TO INTERPRET CORRECTLY, FOR

 BIG ENDIAN COMPUTERS, ISWAP SHOULD BE SET TO 1.

 ARGUMENT DESCRIPTION

 ARGUMENT TYPE I/O DESCRIPTION

 -------- ---- --- -----------------------------

 fp_rd FILE* I pointer to input file-buffer-string

 irec I*4 I RECORD NUMBER TO READ (1 OR GREATER)

 irec_len I*4 I RECORD LENGTH IN BYTES

 l0_buff CHAR*1 O BUFFER CONTAINING LEVEL 0 DATA

 iswap I*4 I 0:FOR LITTLE ENDIAN COMPUTERS

 1:FOR BIG ENDIAN COMPUTERS

 ios_rd I*4 O READ STATUS 0:NO ERROR

This routine calls 3 other routines that are used to convert from

little endian to big endian standards, namely,

 swap32_c (swap32_c.c)

 swap16_c (swap16_c.c)

 swap64_c (swap64_c.c)

Users need not know how to invoke these routines explicitly as they are used only by mcb_readl0_c.

4.4 Level 1 Fortran Software

The required software consists of one routine that users can call to read the level 1 header and data records. Additional software in the form of a sample driver, a file name generation routine, and a file open routine is provided, as described below. A procedure is also provided to link the driver and routines. The resulting executable can be used to read the data and write selected portions to an output file.

4.4.1 Level 1 Fortran Access Routine for Subtype SOLAR (fth_r_solstice_l1_solar_str)

Routine fth_r_solstice_l1_solar_str (file fth_r_solstice_l1_solar_str.for) reads data records of the SOLSTICE level 1 data (subtype solar). Aside from opening the data file, it is the only routine necessary.

USAGE:

 CALL FTH_R_SOLSTICE_L1_SOLAR_STR(LUN_RD,IREC,L1_SOLAR_RECORD,IOS_RD1)

ARGUMENT LIST DESCRIPTION

 ARGUMENT TYPE I/O DESCRIPTION

 -------- ---- --- -----------------------------------

 LUN_RD I*4 I LOGICAL UNIT FOR READ FILE

 IREC I*4 I RECORD NUMBER TO READ.

 THE FILE IS USUALLY READ

 SEQUENTIALLY, BEGINNING WITH RECORD

 NUMBER 1

 L1_SOLAR_RECORD RECORD O RECORD CONTAINING ONE RECORD OF

 STRUCTURE DATA

 IOS_RD1 I*4 O FORTRAN READ STATUS (0:NO ERROR)

--

The following structure record must be declared in the calling routine.

See example in the Appendix (GET_SOLSTICE_L1_SOLAR_STR).

The actual variables used within the structure depend on the value of OBS_MODE (1 to 4, or greater than 4).

 STRUCTURE /udtf_time_record/

 INTEGER *4 year_day

 INTEGER *4 millisec

 END STRUCTURE

--

C Define Level 1 Solar record structure

 structure /L1_SOLAR_RECORD/

 record /udtf_time_record/ TIMETAG !Starting time of this

 ! sample row (UDTF)

 SSPP pointing data (32 bytes)

 real*8 ALPHA_SENSOR_ERROR !Error in Alpha angle

 ! between where sun is and

 ! where SSPP is pointed as

 ! measured by the platform

 ! sun sensor.

 real*8 BETA_SENSOR_ERROR !Error in Beta angle

 ! between where sun is and

 ! where SSPP is pointed as

 ! measured by the platform

 ! sun sensor.

 real*8 ALPHA_ANGLE !The Alpha angle of the SSPP

 real*8 BETA_ANGLE !The Beta angle of the SSPP

C SOLSTICE detector data (20 bytes)

 union

 map

 integer*4 SAMPLE_INDEX

 integer*2 F_COUNTS !Counts from the F tube

 integer*2 G_COUNTS !Counts from the G tube

 integer*2 N_COUNTS !Counts from the N tube

 integer*2 I_TIME !Integration Time

 ! See Microprocessor ICD

 integer*2 SUBI_TIME !Subintegration Time

 ! See Microprocessor ICD

 logical*1 SAMPLE_DONE !If .true. this is the last

 ! row in the sample

 byte NSPARE(5)

 end map

 map

 integer*2 SAMPLE_0

 integer*2 SAMPLE_1

 integer*2 SAMPLE_2

 integer*2 SAMPLE_3

 integer*2 SAMPLE_4

 integer*2 SAMPLE_5

 integer*2 SAMPLE_6

 integer*2 SAMPLE_7

 byte GRATING_DIRECTION

 byte QSPARE(3)

 end map

 end union

C

C Configuration data (12 bytes)

 integer*2 OBS_LIST !Observing list in use

 integer*2 GP !Grating position

 logical*1 IS_PROCESSABLE_DATA !If this is false then the

 ! encoded value for

 ! REASON_WHY_NOT explains

 ! why not

 byte REASON_WHY_NOT !The mapping between this

 ! byte value and the

 ! corresponding text

 ! string can be obtained

 ! from a subroutine call

 byte OBS_MODE !Instrument configuration

 !word (bits 4-7) defining

 !instrument status

 byte SLIT_STATUS !Values are 0-15

 ! Rightmost bit (LSB)

 ! gives Entr Slit solar

 ! status;

 ! 2nd from Rightmost bit

 ! gives Exit Slit solar

 ! status;

 ! 3rd from Rightmost bit

 ! gives Entr Slit

 ! stellar status;

 ! 4th from Rightmost bit

 ! gives Exit Slit

 ! stellar status.

 byte HV_STATUS !Values are 0 - 7 where

 ! the rightmost 3 bits

 ! each give the status of

 ! one of the tubes (bit 1

 ! from the right (LSB)

 ! indicates the the N

 ! tube status, bit 2 the

 ! G tube, and bit 3 the

 ! the F tube status).

 byte GRATING_MONITOR

 byte COUNTER_OVERFLOW !Values are 0 - 7 where the

 ! rightmost 3 bits each

 ! give the overflow status

 ! of one of the tubes (bit

 ! 1 from the right (LSB

 ! is for the N tube, bit 2

 ! is for the G tube, and

 ! bit 3 is for the F tube

 ! counts).

 byte SSPP_MODE !Indicates which mode the

 ! SSPP is in: SLEWING,

 ! TRACKING, or STOWED.

 end structure

C

 record /L1_SOLAR_RECORD/ L1_SOLAR_RECORD

C

4.4.2 Level 1 Fortran Access Routine for Subtype STELLAR (fth_r_solstice_l1_stellar_str)

Usage:

 CALL FTH_R_SOLSTICE_L1_STELLAR_STR(LUN_RD,IREC,L1_STELLAR_RECORD,

 IOS_RD1)

 ARGUMENT DESCRIPTION

 ARGUMENT LIST DESCRIPTION

 ARGUMENT TYPE I/O DESCRIPTION

 -------- ---- --- ----------------------------------

 LUN_RD I*4 I LOGICAL UNIT FOR READ FILE

 IREC I*4 I RECORD NUMBER TO READ.

 THE FILE IS USUALLY READ

 SEQUENTIALLY, BEGINNING WITH

 RECORD NUMBER 1

 L1_STELLAR_RECORD RECORD O RECORD CONTAINING ONE RECORD OF

 STRUCTURE DATA

 IOS_RD1 I*4 O FORTRAN READ STATUS (0:NO ERROR)

The calling routine must define the following record structure.

See example in the Appendix (get_solstice_l1_stellar_str)

 STRUCTURE /udtf_time_record/

 INTEGER *4 year_day

 INTEGER *4 millisec

 END STRUCTURE

 structure /L1_STELLAR_CONFIG_RECORD/

 record /UDTF_TIME_RECORD/ UDTF_TIME !(YEARDAY, MILLISEC)

 integer*4 TARGET !The Sky Map ID of the star

 ! (or whatever) the SSPP

 ! is pointed at

 integer*2 GP !Grating position

 integer*2 OBS_LIST !Observing list in use

 byte OBS_MODE !Instrument mode

 byte GRATING_MONITOR!Indicates which grating drive

 ! was used

 byte SPARE(14)

 end structure

Define L1_STELLAR_DATA_RECORD structure (i.e. holds the science data).

Total record length is 32 bytes.

 structure /L1_STELLAR_DATA_RECORD/

 real*8 ALPHA_ANGLE !SSPP Gimbal Alpha (OBC Rpt. 54)

 real*8 BETA_ANGLE !SSPP Gimbal Beta (OBC Rpt. 54)

 integer*2 SAMPLE_INDEX !What row of the sample is this

 integer*2 F_COUNTS !Counts from the F tube

 integer*2 G_COUNTS !Counts from the G tube

 integer*2 N_COUNTS !Counts from the N tube

 integer*2 INTEGRATION_TIME !See Microprocessor ICD

 integer*2 SUBINTEGRATION_TIME !See Microprocessor ICD

 byte TUBE_STATUS !Bits 0-2 (TUBE_STATUS mod 16 =

 ! 0-7) encode the counter

 ! overflow status:

 ! bit 0: N-tube

 ! bit 1: G-tube

 ! bit 2: F-tube

 !Bits 4-6 (TUBE_STATUS div 16 =

 ! 0-7) encode the HV status:

 ! bit 4: N-tube

 ! bit 5: G-tube

 ! bit 6: F-tube

 byte SLIT_STATUS !Bits 0-3 (values 0-15) encode

 ! the slit status:

 ! bit 0: entrance slit solar

 ! bit 1: exit slit solar

 ! bit 2: entrance slit stellar

 ! bit 3: exit slit stellar

 byte SSPP_STATUS !Bits 0-3 (SSPP_STATUS mod 16 =

 ! 1 to 5) hold the SSPP_MODE:

 ! value 1: OPEN loop tracking

 ! value 2: CLOSED loop tracking

 ! value 3: SLEW

 ! value 4: WAIT

 ! value 5: POS_COMMAND

 !Bit 4 (SSPP_STATUS div 16 =

 ! 0-1) holds the PREC_TRACK

 ! flag (set = yes)

 byte PROBLEM_ID !Index number of "reason why not

 ! processable"--see

 ! L1_SUMMARY.INC (0=OK)

 end structure

Now define the complete data structure (36 bytes long).

 structure /L1_STELLAR_RECORD/

 union

 map

 record /L1_STELLAR_CONFIG_RECORD/ CONFIG

 end map

 map

 record /L1_STELLAR_DATA_RECORD/ DATA

 end map

 end union

 byte RECORD_TYPE !0=CONFIG, 1=DATA

 byte SPARE(3)

 end structure

--

 record /L1_STELLAR_RECORD/ L1_STELLAR_RECORD

There are two kinds of stellar records, data and configuration.

Only one kind is read, depending on the value of RECORD_TYPE (0 for configuration data, 1 for physical data).

4.5 Level 1 C Software

As in the Fortran case, the required software consists of one routine that users can call to read the level 1 SOLAR data files and one routine that users can call to read the level 1 STELLAR files. Additional software in the form of a sample driver, a file name generation routine, and a file open routine are provided and described in the Appendix. A procedure is also provided to link the driver and routines. The resulting executable can be used to read the data and write selected portions to an output file.

4.5.1 Level 1 C Access Function Routine for Subtype SOLAR (fth_r_solstice_l1_solar_str_c)

C function routine fth_r_solstice_l1_solar_str_c (file fth_r_solstice_l1_solar_str_c.c) reads the SOLSTICE level 1 data (subtype SOLAR). Aside form opening the file, it is the only routine users need to call for reading the files.

Usage:

 void fth_r_solstice_l1_solar_str_c(FILE *ifp,int rlen,int irec_rd,

 struct l1_solar_record *l1_solar_record,int* ios)

Argument list description:

 NAME TYPE I/O DESCRIPTION

 ------- ------- --- ------------------------------

 FILE *ifp file pointer I file pointer to input file

 rlen int I record length in 4-byte words

 (value should be 18)

 irec_rd int I record number to read.

 Nominally, the file is read

 sequentially beginning

 with record 1

 l1_solar_record record O data record read

 structure

 ios int O read status. 0:no error

struct udtf_time_record

{

 int year_day;

 int millisec;

};

struct l1_stellar_config_record

{

 struct udtf_time_record timetag; /* !(yearday, millisec)*/

 int target; /* !the sky map id of the star

 ! (or whatever) the sspp

 ! is pointed at*/

 short int gp; /* !grating position*/

 short int obs_list; /* !observing list in use*/

 char obs_mode; /* !instrument mode*/

 char grating_monitor;/*!indicates which grating drive

 ! was used*/

 char spare[14];

};

Define L1_STELLAR_DATA_RECORD structure (i.e. holds the science data). Total record length is 32 bytes.

 struct l1_stellar_data_record

{

 double alpha_angle; /* sspp gimbal alpha (obc rpt. 54)*/

 double beta_angle; /* sspp gimbal beta (obc rpt. 54)*/

 short int sample_index; /* what row of the sample is this*/

 short int f_counts; /* counts from the f tube*/

 short int g_counts; /* counts from the g tube*/

 short int n_counts; /* counts from the n tube*/

 short int integration_time; /* see microprocessor icd*/

 short int subintegration_time; /* see microprocessor icd*/

 char tube_status; /* bits 0-2 (tube_status mod 16 =

 0-7) encode the counter

 overflow status:

 bit 0: n-tube

 bit 1: g-tube

 bit 2: f-tube

 bits 4-6 (tube_status div 16 =

 0-7) encode the hv status:

 bit 4: n-tube

 bit 5: g-tube

 bit 6: f-tube

 */

 char slit_status; /* bits 0-3 (values 0-15) encode

 the slit status:

 bit 0: entrance slit solar

 bit 1: exit slit solar

 bit 2: entrance slit stellar

 bit 3: exit slit stellar

 */

 char sspp_status; /* bits 0-3 (sspp_status mod 16 =

 1 to 5) hold the sspp_mode:

 value 1: open loop tracking

 value 2: closed loop tracking

 value 3: slew

 value 4: wait

 value 5: pos_command

 bit 4 (sspp_status div 16 =

 0-1) holds the prec_track

 flag (set = yes)

 */

 char problem_id; /* index number of "reason why

 not processable"--see

 l1_summary.inc (0=ok)

 */

};

Now define the complete data structure (36 bytes long).

 struct l1_stellar_record

{

 union u_type1

 {

 struct l1_stellar_config_record config;

 struct l1_stellar_data_record data;

 } u_config_data;

 char record_type; /*!0=config, 1=data*/

 char spare[3];

} l1_stellar_record;

Define Level 1 Solar record structure.

 struct l1_solar_record

{

 struct udtf_time_record timetag; /* starting time of this

 sample row (udtf)

 */

 double alpha_sensor_error; /* error in alpha angle

 between where sun is and

 where sspp is pointed as

 measured by the platform

 sun sensor.

 */

 double beta_sensor_error; /* error in beta angle

 between where sun is and

 where sspp is pointed as

 measured by the platform

 sun sensor.

 */

 double alpha_angle; /* the alpha angle of the sspp*/

 double beta_angle; /* the beta angle of the sspp */

Solstice detector data (20 bytes).

 union u_type2

 {

 struct map1

 {

 int sample_index;

 short int f_counts; /* counts from the f tube */

 short int g_counts; /* counts from the g tube */

 short int n_counts; /* counts from the n tube */

 short int i_time; /* integration time

 see microprocessor icd

 */

 short int subi_time; /* subintegration time

 see microprocessor icd

 */

 char sample_done; /* if .true. this is the last

 row in the sample

 */

 char nspare[5];

 } obs_mode_a;

 struct map2

 {

 short int sample_0;

 short int sample_1;

 short int sample_2;

 short int sample_3;

 short int sample_4;

 short int sample_5;

 short int sample_6;

 short int sample_7;

 char grating_direction;

 char qspare[3];

 } obs_mode_b;

 } det_data;

 short int obs_list; /* observing list in use */

 short int gp; /* grating position */

 char is_processable_data; /* if this is false then the

 encoded value for

 reason_why_not explains

 why not

 */

 char reason_why_not; /* the mapping between this

 byte value and the

 corresponding text

 string can be obtained

 from a subroutine call

 */

 char obs_mode; /* instrument configuration

 word (bits 4-7) defining

 instrument status

 */

 char slit_status; /* values are 0-15

 rightmost bit (lsb)

 gives entr slit solar

 status;

 2nd from rightmost bit

 gives exit slit solar

 status;

 3rd from rightmost bit

 gives entr slit

 stellar status;

 4th from rightmost bit

 gives exit slit

 stellar status.

 */

 char hv_status; /* values are 0 - 7 where

 the rightmost 3 bits

 each give the status of

 one of the tubes (bit 1

 from the right (lsb)

 indicates the the n

 tube status, bit 2 the

 g tube, and bit 3 the

 the f tube status).

 */

 char grating_monitor;

 char counter_overflow; /* values are 0 - 7 where the

 rightmost 3 bits each

 give the overflow status

 of one of the tubes (bit

 1 from the right (lsb

 is for the n tube, bit 2

 is for the g tube, and

 bit 3 is for the f tube

 counts).

 */

 char sspp_mode; /* indicates which mode the

 sspp is in: slewing,

 tracking, or stowed.

 */

} l1_solar_record;

Finally, define the Level 1 solar sample set structure.

 int l1_sample_rows;

 #define l1_sample_rows 4096

 struct l1_sample_set_

{

 struct l1_solar_record row[l1_sample_rows];

 /* an array of rows for this sample */

 struct udtf_time_record start_time;

 /* the timetag associated with the first row in the structure */

 struct udtf_time_record stop_time;

 /* the timetag associated with the last row in the structure */

 int num_of_rows;

 /* indicates how many rows of the structure have data */

 int target;

 char start_smaf;

 /* starting smaf number of the data set */

 char stop_smaf; /* stop smaf number of the data set*/

 char spare[6];

};

 /* end include file l1_sample_set.i */

As noted for the corresponding Fortran access routine, there is currently no independent documentation available which describe the variables other than the in-line comments of the original SOLSTICE Fortran code.

4.5.2 Level 1 C Access Function Routine for Subtype STELLAR (fth_r_solstice_l1_stellar_str_c)

C function routine fth_r_solstice_l1_stellar_str_c (file fth_r_solstice_l1_stellar_str_c.c) reads the SOLSTICE level 1 data (subtype STELLAR). Aside form opening the file, it is the only routine users need to call for reading the files.

Usage:

void fth_r_solstice_l1_stellar_str_c(FILE *ifp,int rlen,int irec_rd,

 struct l1_stellar_record *l1_stellar_record,int* ios)

Argument list description:

 NAME TYPE I/O DESCRIPTION

 ------- ------- --- ------------------------------

 FILE *ifp file pointer I file pointer to input file

 rlen int I record length in 4-byte words

 (value should be 18)

 irec_rd int I record number to read.

 Nominally, the file is read

 sequentially beginning

 with record 1

 l1_stellar_record record O data record read

 structure

 ios int O read status. 0:no error

The record l1_stellar_record is described in the previous section for

the function

 fth_r_solstice_l1_solar_str_c

4.6 Level 2 Fortran Software

The required software consists of one routine which users can call to read the level 2 file of subtype L2OUT. Additional software in the form of a sample driver, a file name generation routine, and a file open routine are provided. A procedure is also provided to link the driver and routines. The resulting executable can be used to read the data and write selected portions to an output file for analysis or plots.

4.6.1 Level 2 Fortran File Access Routine for Subtype SOLAR

 Routine name Description

 ------------ --

 READ_SOL_L2_SFDU.FOR Used to read the header record.

 READ_SOL_L2_SOLAR_DATA.FOR Used to read the data records.

These routines are called by the user.

USAGE:

 CALL READ_SOL_L2_SFDU(LUN, L2_SFDU_HDR, GOOD_READ)

ARGUMENT LIST DESCRIPTION

ARGUMENT TYPE I/O DESCRIPTION

-------- ---- --- -----------

LUN I*4 I Logical unit for file to be read.

L2_SFDU_HDR RECORD O Header record, always the first

 STRUCTURE record.

GOOD_READ I*4 Fortran read status (0: no error)

--

This record structure must be declared in the calling routine.

See example in the Appendix (GET_SOL_L2_SOLAR.FOR).

 STRUCTURE /SFDU_LABEL_STRUCTURE/

Argument Type I/O Description

------------- --------- ---------------------------

CONTROL_ CHARACTER*4 O AUTHORITY_ID !control authority

 for UARS data

VERSION_ID CHARACTER*1 O Version identifier

CLASS_ID CHARACTER*1 O Class identifier

SPARE CHARACTER*2

DATA_DESCRIPTIVE_REC_ID

 CHARACTER*4 O ID for data in rest of file

 UNION

 MAP

 CHARACTER*8 ASCII_LENGTH ! Length in bytes of rest

 END MAP ! of file in ASCII

 MAP

 INTEGER*4 BINARY_LENGTH(2) ! Length in bytes of rest

 END MAP ! of file in binary

 END UNION

 END STRUCTURE

This size parameter is the length in bytes of the SFDU structure

defined above.

 INTEGER *4 SFDU_LABEL_SIZE

 PARAMETER (SFDU_LABEL_SIZE = 20)

STRUCTURE /L2_SFDU_HDR_DEF/

 RECORD /SFDU_LABEL_STRUCTURE/ LABEL

 STRUCTURE /L2_SFDU_INNER_PART/ VALUE

 RECORD /SFDU_LABEL_STRUCTURE/ LABEL

 CHARACTER*48 VALUE

 END STRUCTURE

END STRUCTURE

To read data records (record number 2 to n) use,

 CALL READ_SOL_L2_SOLAR_DATA(LUN, L2_SOLAR_RECORD, GOOD_READ)

ARGUMENT TYPE I/O DESCRIPTION

-------- ---- --- -----------

LUN I*4 I Logical unit for file to be read.

L2_SOLAR_RECORD RECORD O Data record, second to end of file.

 STRUCTURE

GOOD_READ I*4 Fortran read status (0: no error)

--

This record structure must be declared in the calling routine.

See example in the Appendix (GET_SOL_L2_SOLAR.FOR).

 STRUCTURE /UDTF_TIME_RECORD/

 INTEGER *4 YEAR_DAY

 INTEGER *4 MILLISEC

 END STRUCTURE

 STRUCTURE /L2_SOLAR_RECORD_/

 RECORD /UDTF_TIME_RECORD/ TIMETAG ! Start time for this data

 REAL*4 ADJUSTED_CR ! Corrected count rate

 REAL*4 FLUX ! In photons/s/cm**2

 REAL*4 SF ! Error in flux

 REAL*4 WAVELENGTH ! In nm

 REAL*4 BANDPASS ! In nm

 REAL*4 LONG_TERM_DEVIANCE ! Comparison of this value to

 ! the range of values over the

 ! solar cycle

 REAL*4 SHORT_TERM_DEVIANCE ! Comparison of this value to

 ! recent measured values

 REAL*4 ADJUSTED_GP ! GP corrected for pointing/

 ! focus error

 INTEGER*2 GP ! Grating position (0-2047)

 INTEGER*2 SOLAR_ZENITH_ANGLE ! 0 - 1800 (0.1 deg)

 INTEGER*2 LIMB_TANGENT_HEIGHT ! 0 - ~ 6000 (0.1 km)

 CHARACTER*1 TUBE_ID ! F, G, or N

 LOGICAL*1 OVERFLOW_CONFIDENCE ! Are we confident that we

 ! overflow (if any)

 ! correctly compensated for

 LOGICAL*1 GAP_FLAG ! Was there a gap in this

 ! measurement?

 LOGICAL*1 LINEARITY_FLAG ! Was this data set linear?

 BYTE OBSERVATION_STATUS ! Each of the 8 bits (numbered

 ! 0 to 7) of this byte is used

 ! for a different flag, as

 ! follows:

 ! The first 4 bits are for the

 ! pointing quality. If the

 ! indicated bit is set, then

 ! the condition described does

 ! obtain for this record.

 ! 0: some data out of SPEC but

 ! all of the data can be

 ! calibrated

 !

 ! 1: some data is off our map

 ! and can not be properly

 ! calibrated

 !

 ! (Note: if both bits 0

 ! and 1 are set, the data

 ! in this record are not

 ! usable.)

 !

 ! 2: The PSS angles were the

 ! angle of choice for

 ! calibration but were not

 ! available for some

 ! reason (probably an

 ! error in the OBC tele-

 ! metry). If this flag is

 ! set, the ephemeris-

 ! calculated pointing

 ! angles were used to

 ! allow processing

 ! of this sample, but

 ! this data should not be

 ! used in the Level 3

 ! processing to avoid

 ! inconsistencies in the

 ! Level 3 product.

 !

 ! 3: spare

 !

 ! 4: Fixed GP experiment

 !

 ! 5: Bad (questionable)

 ! temperature-dependent

 ! wavelength shift

 !

 ! 6: +28v gain calibration

 ! required extrapolation

 !

 ! 7: spare

 BYTE SAA_FLAG ! Over which (if any) of 8 S.

 ! Atlantic Anomaly regions

 ! was the data taken?

 END STRUCTURE

C Define the OBSERVATION_STATUS bits:

 INTEGER*2 OUT_OF_SPEC_BIT, OFF_MAP_BIT, PSS_NOT_AVAIL_BIT,

 & FIXED_GP_EXP_BIT, BAD_WV_SHIFT_BIT, EXTRAPOLATION_BIT,

 & POINTING_BIT_1, PNT_BIT_FLD_LEN, POINTING_THRESH

 PARAMETER (

 & OUT_OF_SPEC_BIT = 0,

 & OFF_MAP_BIT = 1,

 & PSS_NOT_AVAIL_BIT = 2,

 & FIXED_GP_EXP_BIT = 4,

 & BAD_WV_SHIFT_BIT = 5,

 & EXTRAPOLATION_BIT = 6,

 & POINTING_BIT_1 = 0, ! The LSB of the pointing

 ! information bits

 & PNT_BIT_FLD_LEN = 4, ! The length, in bits, of the

 ! pointing bits field

 & POINTING_THRESH = 1 ! The upper limit for toler-

 ! able pointing quality

 &)

C

C *** end L2_SOLAR_RECORD.INC ***

4.6.2 Level 2 Fortran Access routines for Subtype STELLAR

 READ_SOL_L2_SFDU.FOR

This routine is called by the user.

USAGE:

 CALL READ_SOL_L2_SFDU(LUN, L2_SFDU_HDR, GOOD_READ)

ARGUMENT LIST DESCRIPTION

ARGUMENT TYPE I/O DESCRIPTION

-------- ---- --- -----------

LUN I*4 I Logical unit for file to be read.

L2_SFDU_HDR RECORD O Header record, always the first record

 STRUCTURE

GOOD_READ I*4 Fortran read status (0: no error)

This record structure must be declared in the calling routine.

See example in the Appendix (get_sol_l2_stelllar.for).

 STRUCTURE /SFDU_LABEL_STRUCTURE/

 Type/size Variable Description

 --------- -------------------- ---------------------

 CHARACTER*4 CONTROL_AUTHORITY_ID !control authority for UARS data

 CHARACTER*1 VERSION_ID ! version identifier

 CHARACTER*1 CLASS_ID ! class identifier

 CHARACTER*2 SPARE

 CHARACTER*4 DATA_DESCRIPTIVE_REC_ID ! id for data in rest of

 ! file

 UNION

 MAP

 CHARACTER*8 ASCII_LENGTH ! length in bytes of rest

 END MAP ! of file in ASCII

 MAP

 INTEGER*4 BINARY_LENGTH(2) !length in bytes of rest

 END MAP ! of file in binary

 END UNION

 END STRUCTURE

This size parameter is the length in bytes of the SFDU structure

defined above.

 INTEGER *4 SFDU_LABEL_SIZE

 PARAMETER (SFDU_LABEL_SIZE = 20)

 STRUCTURE /L2_SFDU_HDR_DEF/

 RECORD /SFDU_LABEL_STRUCTURE/ LABEL

 STRUCTURE /L2_SFDU_INNER_PART/ VALUE

 RECORD /SFDU_LABEL_STRUCTURE/ LABEL

 CHARACTER*48 VALUE

 END STRUCTURE

 END STRUCTURE

 RECORD /L2_SFDU_HDR_DEF / L2_SFDU_HDR

To read data records (record number 2 to end of file).

 CALL READ_SOL_L2_STELLAR_DATA(LUN, L2_STELLAR_RECORD, GOOD_READ)

ARGUMENT TYPE I/O DESCRIPTION

-------- ---- --- -----------

LUN I*4 I Logical unit for file to be read.

L2_STELLAR_RECORD RECORD O Data record, second to end of file.

 STRUCTURE

GOOD_READ I*4 Fortran read status (0: no error)

This record structure must be declared in the calling routine

See example in the Appendix (get_sol_l2_stelllar.for).

 Note: One record per smaf (science data sample)

 One OA record every 8 smafs

 At one record per smaf, 20,000 stellar science smafs, plus 2500 orbit/

 attitude records per day yields 2500 block file size per day.

 Note that in addition to being reported every 8 smafs, an OA record

 will be reported at the beginning and end of each experiment.

 The order for reporting record type will be as follows:

 CONFIG -

 OA \

 SCIENCE |

 SCIENCE |-- ONE OBSERVATION

 SCIENCE |

 ... /

 OA -

 CONFIG

 OA

 SCIENCE

 SCIENCE

 SCIENCE

 ...

 OA

 Define parameter constants for record type byte

 (for use by routines stuffing or reading this record)

 byte SCI, OA, CONFIG

 parameter (SCI=0, OA=1, CONFIG=2)

 Define parameter constants to identify the bit corresponding

 to each QUALITY_FLAG (all are 1 bit each except POINTING, which

 is two bits). Five bits are used for each channel, leaving

 one spare bit in an integer*2 field. Bits 0-4 are for the

 G channel, bits 5-9 for the F channel, and bits 10-14 for the

 N channel. The following constants identify the relative

 position within each 5-bit field of each flag:

 INTEGER*2 POINTING_BIT, POINTING_LEN, OVERFLOW_BIT, LINEAR_BIT,

 & GAP_BIT

 PARAMETER (POINTING_BIT=0, POINTING_LEN=2, OVERFLOW_BIT=2,

 & LINEAR_BIT=3, GAP_BIT=4)

Include file_name: PCT_UDTF_TIME.INC

 STRUCTURE /UDTF_TIME_RECORD/

 INTEGER *4 YEAR_DAY

 INTEGER *4 MILLISEC

 END STRUCTURE

Define the Level 2 STELLAR record structure.

 STRUCTURE / L2_STELLAR_ /

 UNION

 MAP ! THIS IS THE SCIENCE TYPE

 INTEGER*4 SCI_MILLISEC

 UNION

 MAP

 REAL*4 G_WAVE

 REAL*4 F_WAVE

 REAL*4 N_WAVE

 REAL*4 G_FLUX

 REAL*4 F_FLUX

 REAL*4 N_FLUX

 REAL*4 G_SDEV

 REAL*4 F_SDEV

 REAL*4 N_SDEV

 INTEGER*4 G_CNTS

 INTEGER*4 F_CNTS

 INTEGER*4 N_CNTS

 END MAP

 MAP

 REAL*4 WAVE(3)

 REAL*4 FLUX(3)

 REAL*4 SDEV(3)

 INTEGER*4 CNTS(3)

 END MAP

 END UNION

 INTEGER*2 INTEG_TIME

 INTEGER*2 QUALITY_FLAGS

 BYTE SAA_FLAGS

 BYTE SLIT_HV_STATUS

 !HV status:

 ! Bit 0: G

 ! Bit 1: F

 ! Bit 2: N

 !Slit status:

 ! Bit 4: Entrance slit solar

 ! Bit 5: Exit slit solar

 ! Bit 6: Entrance slit stellar

 ! Bit 7: Exit slit stellar

 BYTE BAD_WV_SHIFT

 ! One bit for each channel; if

 ! the bit

 ! is set, the temperature-

 ! dependent

 ! wavelength shift is bad (bit

 ! 0-G, bit 1-F, bit 2-N)

 BYTE SSPP_STATUS

 END MAP

 MAP ! THIS IS THE OA type (every 8 smafs)

 INTEGER*4 OA_MILLISEC

 REAL*4 SSPP_ALPHA

 REAL*4 SSPP_BETA

 REAL*4 SSPP_ALPHA_ERR

 REAL*4 SSPP_BETA_ERR

 REAL*4 TANGENT_HEIGHT

 REAL*4 TGT_ZENITH

 REAL*4 SC_LAT

 REAL*4 SC_LON

 REAL*4 LIMB_LAT

 REAL*4 LIMB_LON

 REAL*4 SOLAR_ZENITH

 REAL*4 SOLAR_AZIMUTH

 BYTE OA_SPARE(8)

 END MAP

 MAP ! THIS IS THE CONFIG type

 RECORD /UDTF_TIME_RECORD/ UDTF_TIME

 INTEGER*4 TARGET ! (SKYMAP ID, 0 FOR SUN)

 CHARACTER*12 TARGET_NAME

 UNION

 MAP

 REAL*4 G_BANDPASS

 REAL*4 F_BANDPASS

 REAL*4 N_BANDPASS

 REAL*4 G_ADJGP

 REAL*4 F_ADJGP

 REAL*4 N_ADJGP

 END MAP

 MAP

 REAL*4 BANDPASS(3)

 REAL*4 ADJGP(3)

 END MAP

 END UNION

 INTEGER*2 GP

 INTEGER*2 SUBINT_TIME

 INTEGER*2 OBS_LIST

 BYTE GRATING_MONITOR

 BYTE CONFIG_SPARE(5)

 END MAP

 END UNION

 BYTE TYPE ! 0 = SCIENCE, 1 = OA, 2 = CONFIG

 BYTE SPARE(3)

 END STRUCTURE

 4.7 Level 2 C Software

The required software consists of routines that the users can call to

read the level 2 files of subtype SOLAR and STELLAR. Additional software in the form of a sample driver, a file name generator, and a file open routine are also provided. A procedure is also provided to link the drive and routines. The resulting executable can be used to read the data and write selected portions to an output file for analysis or plots.

4.7.1 Level 2 C File Access Routine for Subtype SOLAR

 sol_l2_sfdu_c.c Used to read the header record.

 sol_l2_solar_data_c.c Used to read the data records.

These routines are called by the user.

Useage:

 sol_l2_sfdu_c(ifp, &l2_sfdu_hdr)

ARGUMENT LIST DESCRIPTION

ARGUMENT TYPE I/O DESCRIPTION

-------- ---- --- -----------

ifp I*4 I Logical unit for file to be read.

l2_sfdu_hdr record O Header record, always the first record.

 structure

This record structure that must be declared in the calling routine.

See example in the Appendix (get_sol_l2_solar_c.c).

struct sfdu_label_structure {

 Type Variable Description

 ----- --------------------- ------------------------------

 char control_authority_id[4];/* control authority for UARS data */

 char version_id; /* version identifier */

 char class_id; /* class identifier */

 char spare[2];

 char data_descriptive_rec_id[4]; /* id for data in rest of file*/

 union hfdu_rec_tag {

 char ascii_length[8]; /* length in bytes of rest */

 /* of file in ascii */

 int binary_length[2]; /* length in bytes of rest */

 /* of file in binary */

 } hfdu_rec; /* end of hfdu_rec_tag union */

 } label;

struct l2_sfdu_hdr_def {

 struct sfdu_label_structure label;

 struct l2_sfdu_inner_part {

 struct sfdu_label_structure label;

 char value[48];

 } value;

 } l2_sfdu_hdr, *P_sfdu_hdr;

To read data records (record number 2 to n).

 sol_l2_solar_data_c(ifp, l2_solar_record)

ARGUMENT LIST DESCRIPTION

ARGUMENT TYPE I/O DESCRIPTION

-------- ---- --- -----------

ifp I*4 I Logical unit for file to be read.

l2_solar_record record O Data record, second to end of file.

 structure

This record structure that must be declared in the calling routine.

See example in the Appendix (get_sol_l2_solar_c.c).

Solstice l2 solar record structure.

 struct udtf_time_record {

 int year_day;

 int millisec;

 } ;

 struct l2_solar_record_ {

 struct udtf_time_record timetag; /* Start time for this data */

 float adjusted_cr; /* Corrected count rate */

 float flux; /* In photons/s/cm**2 */

 float sf; /* Error in flux */

 float wavelength; /* In nm */

 float bandpass; /* In nm */

 float long_term_deviance; /* Comparison of this value to

 the range of values over

 the solar cycle */

 float short_term_deviance;/* Comparison of this value to

 recent measured values */

 float adjusted_gp; /* GP corrected for pointing focus

 error */

 short gp; /* Grating position (0-2047) */

 short solar_zenith_angle; /* 0 - 1800 (0.1 deg) */

 short limb_tangent_height; /* 0 - ~ 6000 (0.1 km) */

 char tube_id; /* F, G, or N */

 char overflow_confidence; /* Are we confident that */

 /* we correctly compensated */

 /* for overflow (if any) */

 char gap_flag; /* Was there a gap in this */

 /* measurement? */

 char linearity_flag; /* Was this data set linear? */

 char observation_status; /* Each of the 8 bits (numbered*/

 /* 0 to 7) of this byte is used*/

 /* for a different flag, as */

 /* follows: */

 /* The first 4 bits are for the*/

 /* pointing quality. If the */

 /* indicated bit is set, then */

 /* the condition described does*/

 /* obtain for this record. */

 /* 0: some data out of SPEC but*/

 /* all of the data can be */

 /* calibrated */

 /* 1: some data is off our map*/

 /* and can not be properly */

 /* calibrated */

 /* (Note: if both bits 0 */

 /* and 1 are set, the data */

 /* in this record are not */

 /* usable.) */

 /* 2: The PSS angles were the */

 /* angle of choice for */

 /* calibration but were not*/

 /* available for some */

 /* reason (probably an */

 /* error in the OBC tele- */

 /* metry). If this flag is */

 /* set, the ephemeris- */

 /* calculated pointing */

 /* angles were used to */

 /* allow processing */

 /* of this sample, but */

 /* this data should not be */

 /* used in the Level 3 */

 /* processing to avoid */

 /* inconsistencies in the */

 /* Level 3 product. */

 /* 3: spare */

 /* 4: Fixed GP experiment */

 /* 5: Bad (questionable) */

 /* temperature-dependent */

 /* wavelength shift */

 /* 6: +28v gain calibration */

 /* required extrapolation */

 /* 7: spare */

 char saa_flag; /* Over which (if any) of 8 S. */

 /* Atlantic Anomaly regions */

 /* was the data taken? */

 } l2_solar_record, *p_solar_record;

4.7.2 Level 2 C File Access Routine for Subtype STELLAR

 sol_l2_sfdu_c.c Used to read the header record.

 sol_l2_stellar_data_c.c Used to read the data records.

These routines are called by the user.

Useage:

 sol_l2_sfdu_c(ifp, &l2_sfdu_hdr)

ARGUMENT LIST DESCRIPTION

ARGUMENT TYPE I/O DESCRIPTION

-------- ---- --- -----------

ifp I*4 I Logical unit for file to be read.

l2_sfdu_hdr record O Header record, always the first record.

 structure

This record structure that must be declared in the calling routine.

See example in the Appendix (get_sol_l2_stellar_c.c).

struct sfdu_label_structure {

 Type Variable Description

 ----- --------------------- ------------------------------

 char control_authority_id[4];/* control authority for UARS data */

 char version_id; /* version identifier */

 char class_id; /* class identifier */

 char spare[2];

 char data_descriptive_rec_id[4]; /* id for data in rest of file */

 union hfdu_rec_tag {

 char ascii_length[8]; /* length in bytes of rest */

 /* of file in ascii */

 int binary_length[2]; /* length in bytes of rest */

 /* of file in binary */

 } hfdu_rec; /* end of hfdu_rec_tag union */

 } label;

struct l2_sfdu_hdr_def {

 struct sfdu_label_structure label;

 struct l2_sfdu_inner_part {

 struct sfdu_label_structure label;

 char value[48];

 } value;

 } l2_sfdu_hdr, *p_sfdu_hdr;

To read data records (record numbers 2 to n).

 sol_l2_stellar_data_c(ifp, &l2_stellar_record)

ARGUMENT LIST DESCRIPTION

ARGUMENT TYPE I/O DESCRIPTION

-------- ---- --- -----------

ifp I*4 I Logical unit for file to be read.

l2_stellar_record record O Header record, always the first

 structure record.

This record structure that must be declared in the calling routine.

See example in the Appendix (get_sol_l2_stellar_c.c).

Record layout for the udtf time format. Used for storing and retrieving UTDF time.

 struct udtf_time_record {

 int year_day;

 int millisec;

 } udtf_time;

struct l2_stellar_record_tag {

 union rec_union_tag {

 struct sci_tag { /* start of sci structure */

 int sci_millisec;

 union {

 struct sci_v_tag {

 float g_wave;

 float f_wave;

 float n_wave;

 float g_flux;

 float f_flux;

 float n_flux;

 float g_sdev;

 float f_sdev;

 float n_sdev;

 int g_cnts;

 int f_cnts;

 int n_cnts;

 } sci_v;

 struct sci_a_tag {

 float wave[3];

 float flux[3];

 float sdev[3];

 int cnts[3];

 } sci_a;

 } sci_wsfc; /* end of internal sci union */

 short integ_time;

 short quality_flags;

 char saa_flags;

 char slit_hv_status;

 /* HV status: */

 /* Bit 0: G */

 /* Bit 1: F */

 /* Bit 2: N */

 /* Slit status: */

 /* Bit 4: Entrance slit solar */

 /* Bit 5: Exit slit solar */

 /* Bit 6: Entrance slit stellar */

 /* Bit 7: Exit slit stellar */

 char bad_wv_shift;

 /* One bit for each channel; if the bit */

 /* is set, the temperature-dependent */

 /* wavelength shift is bad (bit 0-G, bit */

 /* 1-F, bit 2-N) */

 char sspp_status;

 } sci; /* end of sci structure */

 struct oa_tag { /* start of oa structure */

 int oa_millisec;

 float sspp_alpha;

 float sspp_beta;

 float sspp_alpha_err;

 float sspp_beta_err;

 float tangent_height;

 float tgt_zenith;

 float sc_lat;

 float sc_lon;

 float limb_lat;

 float limb_lon;

 float solar_zenith;

 float solar_azimuth;

 char oa_spare[8];

 } oa; /* end of oa structure */

 struct config_tag { /* start of config structure */

 struct udtf_time_record udtf_time;

 int target; /* (skymap id, 0 for sun) */

 char target_name[12];

 union config_union_tag { /* start of config internal

 union */

 struct config_v_tag {

 float g_bandpass;

 float f_bandpass;

 float n_bandpass;

 float g_adjgp;

 float f_adjgp;

 float n_adjgp;

 } config_v;

 struct config_a_tag {

 float bandpass[3];

 float adjgp[3];

 } config_a; /* end of config internal union */

 } cf_union;

 short gp;

 short subint_time;

 short obs_list;

 char grating_monitor;

 char config_spare[5];

 } config;

 } rec_union; /* end of l2_stellar_record union */

 char type; /* 0 = science, 1 = oa, 2 = config */

 char spare[3];

} l2_stellar_record;

Appendix: Additional Software

Sample software that uses the file access software described above is described in this Appendix. It should be noted that the software described here is not a formal part of the required software package, and is provided only as a convenience to users. The software described below consists of sample drivers, and functions and routines that generate file names and open the files. These are provided in Fortran and C.

This software, combined with the access software described earlier in the main text, is self-contained, and can be linked into executables. Link procedures are provided and described below.

A.1 Additional Level 0 Fortran Software

A.1.1 Level 0 Fortran File Open Routine (opn_l0_file)

The Fortran routine opn_l0_file (file opn_l0_file.for) opens a UARS level 0 file with the proper attributes. It calls routine gen_l0_name (file gen_l0_name.for) to generate the needed filenames based on user-input values such as the instrument acronym, the subtype, the uars day, and the data version, as described above. For each data version, there is a cycle number that is greater than or equal to 1. Users need not know the cycle number as long as the variable ICYC_MAX is set to be larger than the actual cycle number of the file. A value of 10 for ICYC_MAX is usually large enough. Routine opn_l0_file will begin with cycle number 1 and will increment cycle numbers until a file is successfully opened or until ICYC_MAX is reached. The data version number and the cycle number are determined by production processing. The data version number corresponds to the software version that was used to generate the file, and the cycle number is incremented each time reprocessing was needed for the same file using the same software.

Usage:

 CALL OPN_L0_FILE(INSTR,IUARS_DAY,IVER_IN,

 & ICYC_MAX,ITYPE,IN_RECL,ICYC,LUN,FLNAME,IVAR,IDIRECT,IOS)

 ARGUMENT LIST DESCRIPTION

 ARGUMENT TYPE I/0 DESCRIPTION

 -------- ---- --- -------------------------------------

 INSTR CH*12 I INSTRUMENT ACRONYM. e.g.,

 claes, haloe, hrdi, isams, mls, pem,

 solstice, susima, susimb, windii,

 acrim,

 engineering, spacecraft, obc, quality

 IUARS_DAY I*4 I UARS DAY.

 IVER_IN I*4 I DATA VERSION.

 ICYC_MAX I*4 I MAXIMUM CYCLE NUMBER TO TRY.

 ITYPE I*4 I SET LAST 4 CHARACTERS OF INPUT FILE

 NAME. 1: PROD

 2: BNBE

 3: BNLE

 -2: BVBE

 -3: BVLE

IN_RECL I*4 I RECORD LENGTH (WORDS) OF

 FILE IF FIXED LENGTH.

 IF VALUE IS GT 0 FILE IS OPENED

 AS WITH RECL KEYWORD SET TO VALUE OF

 IN_RECL.

ICYC I*4 I/O IF 0 ON INPUT, ROUTINE WILL

 TRY TO OPEN EXISTING FILE. CYCLES

 NUMBERS FROM 1 TO ICYC_MAX WIIL BE

 TRIED. IF EXISTING FILE IS FOUND,

 ICYC IS RETURNED. IF FILE NOT FOUND,

 ICYC IS SET BACK TO 0.

 LUN I*4 I/O LOGICAL UNIT NUMBER OF FILE.

 IF NOT ZERO ON INPUT, THE INPUT VALUE

 IS USED TO OPEN THE FILE.

 IF ZERO ON INPUT, LUN WILL

 BE SET TO 95 (INPUT) IF ICYC IS 0,

 AND TO 96 (OUTPUT) IF ICYC IS NOT 0.

 FLNAME CH*50 O FLNAME OF FILE.

 IVAR I*4 I IF O, OPEN FOR FIXED RECORD LENGTH

 IF -1, OPEN WITH KEYWORD RECORDTYPE

 SET TO 'SEGMENTED'

 IF -2, OPEN WITH KEYWORD RECORDTYPE

 SET TO 'VARIABLE'

 IDIRECT I*4 I INPUT 0:SEQUENTIAL ACCESS,1:DIRECT

 IOS I*4 O STATUS.

A.1.2 Level 0 Fortran File Name Routine (gen_l0_name)

Routine gen_l0_name (file gen_l0_name.for) generates the correct file name based on user-input values of the instrument and subtype acronyms, the UARS day number, and the file data version.

This routine is called only by opn_l0_file, and users only need to link this routine.

Usage:

 CALL GEN_L0_NAME(INSTR,IUARS_DAY,FNAME,IVER,ICYC,

 & ITYPE)

 ARGUMENT DESCRIPTION:

 ARGUMENT TYPE I/0 DESCRIPTION

 -------- ---- --- ---------------------------------------

 INSTR CH*12 I INSTRUMENT ACRONYM.

 IUARS_DAY I*4 I UARS DAY.

 IVER I*4 I DATA VERSION.

 ICYC I*4 I DATA VERSION.

 FNAME CH*50 O filename

A.1.3 Level 0 Sample Fortran Driver and Link Procedure

An example of a driver that uses fth_readl0 (file fth_readl0.for) to read all types of level 0 files is provided and given in file

 get_l0.for

The command/script file

 get_l0.com

can be used to link and generate an executable named

 get_l0.exe

For linking, in addition to the sample driver (file get_l0.for), the routines fth_readl0 (file fth_readl0.for), opn_l0_file (file opn_l0_file.for), gen_l0_name (file gen_l0_name.for), swap16 (file swap16.for), swap32 (file swap32.for), and swap64 (file swap64.for), (as noted earlier) are needed as well.

Upon running program get_l0.exe interactively, the following prompt appears on the screen:

ENTER FILE TYPE NUMBER

 1:CLAES,2:HALOE,3:HRDI,4:ISAMS,5:MLS,6:PEM

 7:SOLSTICE,8:SUSIMA,9:SUSIMB,10:WINDII,11:ACRIM

 12:ENGINEERING,13:SPACECRAFT,14:OBC,15:QUALITY

ENTER UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER'

(-1 FOR BOTH TO DO ALL DATA RECORDS)

DATA VERSION NUMBER,WRITE ASCI FILE[0/1]

SWAP BYTES[0/1]

An example of a user input to this prompt is

12 130 1 10 2 1 1

The different input variables are separated with blanks. As described in the prompt, the first input, '12', selects the ENGINEERING file to open and read. The 130 selects the UARS day to read (there is one file for each day). Recall that UARS day number 1 is September 12, 1991, and January 1 1992 corresponds to UARS day 112. The '1 10' selects the first and last data records wanted (in this case the first 10 records). The next input, '2', is the file data version number. The next to last input, '1', means that an output file (in ASCII) of selected data will be written. The last input, also '1', is used for big endian computers, and a value of '0' is input for little endian systems.

With the above input, the program will read the first 10 data records of the level 0 data file named

 engineering_l0_d0130.v0002_c01_prod

and write a text file named

 engineering_l0_d0130.v0002_c01_asci

containing certain portions of data from the 10 selected records.

UARS file name conventions have been described in Section 1.1. Here, the output file name is the same as the input level 0 file except for the last 4 characters. In the above example, the user need not know the cycle number because the software first tries cycle number 1 and if needed, increments the cycle number until the file is found, or until a preset maximum is reached. This is the value of icyc_max and is currently set to 5. See the previous subsection on routine OPN_L0_FILE for more details.

A.2 Additional Level 0 C Software

A.2.1 Level 0 C File Open Function Routine (opn_l0_file_c)

The C function routine opn_l0_file_c (file opn_l0_file_c.c) opens a UARS level 0 file with the proper attributes. It calls gen_l0_name_c (file gen_l0_name_c.c) to generate the file name based on user-input values such as the acronyms for instrument and parameter, the uars day number, and the data version number, which have been described above. The use of this function parallels that for the Fortran version, which is described in Section A.1.1.

Usage:

 void opn_l0_file_c(char *instr,int iuars_day,int iver_in,

 int icyc_max,int itype_rd,int in_recl,int *icyc,FILE **fp_rd,

 char *flname_rd,int *ios_rd);

 opn_l0_file_c(instr,iuars_day,iver_in,icyc_max,itype_rd,

 in_recl,&icyc,&fp_rd,flname_rd,&ios_rd);

 arguement type i/0 description

--

 instr ch*12 i instrument acronym.

 iuars_day i*4 i uars day. (e.g., sept 12, 1991 is

 uars day 1, jan 1 1992 is uars

 day 112; jan 1 1993 is uars day 478)

 iver_in i*4 i data version.

 icyc_max i*4 i maximum cycle number to try.

 itype i*4 i set last 4 characters of input file

 name.

 1: prod

 2: bnbe

 3: bnle

 4: asci

 in_recl i*4 i record length (bytes) of file if fixed

 length.

 icyc i*4 i/o nominally 0 on input.

 if 0 on input, routine will assume an

 existing file. cycles number will be

 incremented from 1 to icyc_max until

 success. if existing file is found,

 icyc is returned.

 ifp FILE** o pointer to file pointer

 flname ch*50 o flname of file.

 ios i*4 o status of open.

A.2.2 Level 0 C File Name Function Routine (gen_l0_name_c)

Function routine gen_l0_name_c (file gen_l0_name_c.c) generates the correct file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version. This routine is called only by

opn_l0_file_c.c, and users only need to link this routine.

A.2.3 Level 0 Sample C Driver and Link Procedure

An example of a driver that uses mcb_readl0_c to read all types of level 0 files is provided and given in file

 get_l0_c.c

The command/script file

 cclink_get_l0.com

can be used to compile, link, and generate an executable named

 get_l0_c.x

For linking, in addition to the sample driver (file get_l0_c.c), the functions mcb_readl0_c (file mcb_readl0_c.c), opn_l0_file_c (file opn_l0_file_c.c), gen_l0_name_c (file gen_l0_name_c.c), swap16_c (file swap16_c.c), swap32_c (file swap32_c.c), and swap64_c (file swap64_c.c) (noted earlier) are needed as well.

Upon running program get_l0_c.x interactively, the following prompt appears on the screen:

ENTER INSTRUMENT NUMBER

 1:CLAES,2:HALOE,3:HRDI,4:ISAMS,5:MLS,6:PEM

 7:SOLSTICE,8:SUSIMA,9:SUSIMB,10:WINDII,11:ACRIM

 12:ENGINEERING,13:SPACECRAFT,14:OBC,15:QUALITY

ENTER UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER

(-1 FOR BOTH TO DO ALL DATA RECORDS)

DATA VERSION NUMBER

WRITE ASCI FILE (0=NO,1=YES,2=to SCREEN)

SWAP BYTES (0=NO,1=YES)

An example of a user input to this prompt is

5 486 1 3 2 1 1

The different input variables are separated with blanks. As described

in the prompt, the first input, '5', selects the MLS file to

open and read. The '486' selects the UARS day to read (there is one file

for each day). Recall that UARS day number 1 is September 12, 1991, and

January 1 1992 corresponds to UARS day 112. The '1 3' selects the first

and last data records wanted (in this case the first 3 records). The

next input, '2', is the file data version number. The next to last input, '1', means that an ASCII output file of selected data will be written. The last input, also '1', is used for big endian computers, and a value of '0' is input for little endian systems.

With the above input, the program will read the first 3 data records of

the level 0 data file named

 mls_l0_d0486.v0002_c01_prod

and write a text file named

 mls_l0_d0486.v0002_c01_asci

containing certain portions of data from the 3 selected records.

UARS file name conventions have been described in Section 1.1. Here,

the output file name is the same as the input level 0 file except for

the last 4 characters. In the above example, the user need not know the

cycle number because the software first tries cycle number 1 and if

needed, increments the cycle number until the file is found, or until a

preset maximum is reached. This is the value of icyc_max and is currently set to 5. See the previous subsection on routine opn_l0_file_c for more details.

A.3 Additional Level 1 Fortran Software.

A.3.1 Level 1 Fortran File Open Routine (opn_l1_file)

The Fortran routine opn_l1_file (file opn_l1_file.for) opens a UARS level 1 file with the proper attributes. It calls routine gen_l1_name (file gen_l1_name.for) to generate the needed file name based on user-input values such as acronyms for the instrument and parameter, the uars day, and the data version number. Details are the same as described above in Section A.1.1 for the opn_l0_file routine.

An example of using this routine is given by the sample driver in file get_claes_l1_claes_ns.for noted above.

Usage:

 CALL OPN_L1_FILE(INSTR,PARAM,IUARS_DAY,IVER_IN,

 & ICYC_MAX,ITYPE_IN,IN_RECL,ICYC,LUN,FLNAME,IVAR,

 & IDIRECT,IOS)

Argument list description:

 ARGUMENT TYPE I/0 DESCRIPTION

--

 INSTR CH*12 I INSTRUMENT ACRONYM.

 PARAM CH*12 I MEASURE PARAMETER.

 IUARS_DAY I*4 I UARS DAY. (E.G., SEPT 12,

 1991 IS UARS DAY 1, JAN 1

 1992 IS UARS DAY 112;

 JAN 1 1993 IS UARS DAY

 478)

 IVER_IN I*4 I DATA VERSION NUMBER.

 ICYC_MAX I*4 I MAXIMUM DATA CYCLE NUMBER

 TO TRY.

 ITYPE_IN I*4 I USED TO DETERMINE LAST 4

 CHARACTERS OF FILE NAME:

 0 OR 1: PROD

 2: BNBE

 3: BNLE

 4: ASCI

 ALSO USED FOR CONVERSION

 IF APPLICABLE.

 1: NOCONVERSION

 2: CONVERT = 'BIG ENDIAN'

 3: CONVERT = 'LITTLE

 ENDIAN'

 IN_RECL I*4 I RECORD LENGTH (WORDS) OF

 FILE IF FIXED LENGTH.

 IF VALUE IS GT 0 FILE IS

 OPENED WITH RECL KEYWORD

 SET TO VALUE OF IN_RECL.

 IF VALUE IS ZERO, FILE

 WILL BE OPENED WITHOUT

 RECL KEYWORD. AND

 DEFAULT IS USED. FOR

 VARIABLE RECORDS,

 VALUES FOR VMS ARE:

 SEGMENTED:2048(BYTES)

 OTHERS:133

 ICYC I*4 I/O SHOULD BE NOMINALLY SET

 TO 0.

 IF 0 ON INPUT, ROUTINE

 WILL TRY TO OPEN EXISTING

 FILE. CYCLES NUMBERS FROM

 1 TO ICYC_MAX WIIL BE

 TRIED. IF EXISTING FILE IS

 FOUND,ICYC IS RETURNED. IF

 FILE NOT FOUND,

 ICYC IS INCREMENTED BY 1

 UP TO ICYC_MAX.

 IF NOT ZERO ON INPUT, FILE

 IS ASSUMED NOT TO EXIST

 AND A NEW FILE IS OPENED

 USING THE VALUE IF ICYC.

 LUN I*4 I/O LOGICAL UNIT NUMBER OF

 FILE.

 IF NOT ZERO ON INPUT, THE

 INPUT VALUE

 IS USED TO OPEN THE FILE.

 IF ZERO ON INPUT, LUN WILL

 BE SET TO 95 (INPUT) IF

 ICYC IS 0.

 AND TO 96 (OUTPUT) IF ICYC

 IS NOT 0.

 FLNAME CH*50 O FLNAME OF FILE.

 IVAR I*4 I IF O, OPEN FOR FIXED

 RECORD LENGTH,

 AND IS THE CASE FOR CLAES.

 IF -1, OPEN WITH KEYWORD

 RECORDTYPE SET TO

 'SEGMENTED'(VMS ONLY)

 IF -2, OPEN WITH KEYWORD

 RECORDTYPE SET TO

 'VARIABLE'

 IDIRECT I*4 I INPUT 0:SEQUENTIAL

 ACCESS,1:DIRECT.

 DIRECT IS APPLICABLE TO

 CLAES

 IOS I*4 O STATUS AFTER ATTEMPT TO

 OPEN.

A.3.2 Level 1 Fortran File Name Routine (gen_l1_name)

Routine gen_l1_name (file gen_l1_name.for) generates the correct file name based on user-input values of the instrument and subtype acronyms, the UARS day number, and the file data version number.

This routine is called only by opn_l1_file, and users only need to link this routine.

A.3.3 Level 1 Sample Fortran Driver and Link Procedures

Sample drivers are provided to read level 1 files of subtypes solar and stellar.

An example of using FTH_R_SOLSTICE_L1_SOLAR_STR is provided and given in file

 get_solstice_l1_solar_str.for.

The file

 get_solstice_l1_solar_str.com

can be used to link and generate an executable named

 get_solstice_l1_solar_str.exe

Upon running program GET_SOLSTICE_L1_SOLAR_STR.EXE interactively, the following prompt appears on the screen:

ENTER INSTR,PARAM(BOTH LWR CASE,SNGL QUOTES,PARAM IS DATA)

BEGIN UARS DAY,END UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER

(NEGATIVE TO DO ALL DATA RECORDS)

DATA VERSION

IN FILE TYPE (0,1:VMS,2:BIG ENDIAN,3:LITTLE ENDIAN)

An example of a user input to this prompt is

'solstice' 'solar' 1225 1225 1 500 7 2 1

The different input variables are separated with blanks. The first string is the solstice instrument acronym, and the second is the subtype acronym. The '1225 1225' selects the begin and end UARS days to read (there is one file for each day). Here, only the file for UARS day 1225 is processed. UARS day number 1 is September 12, 1991, and January 1 1992 corresponds to UARS day 112. The '1 500' selects the first and last data records wanted (in this case the first 500 records). The '7' gives the file data version number, and the '2' is used for the file name generation (big endian). The last input, namely, '1' chooses the option to write the selected records to a text file. A '0' does not produce a file.

With the above input, the program will read the first 500 data records of the level 1 data file named

 solstice_l1_ssolar_d0120.v1225_c01_bnbe

and write a text file named

 solstice_l1_ssolar_d1225.v0007_c01_asci

containing certain portions of data from the 500 selected records.

Except for the subtype, examples for subtype stellar are the same as for subtype solar.

A.4 Additional Level 1 C Software.

A.4.1 Level 1 C File Open Function (opn_l1_file_c)

The C function routine opn_l1_file_c (file opn_l1_file_c.c) opens a UARS level 1 file with the proper attributes. It calls routine gen_l1_name_c (file gen_l1_name_c.c) to generate the filename based on input values such as acronyms for the instrument (i.e., claes), parameter (i.e., claes), uars day, and the data version number, which have been described previously. Details are the same as described above in Section A.1.1 for the opn_l0_file routine.

Usage:

 opn_l1_file_c(char* instr,char* param,int iuars_day,

 int iver_in,int icyc_max,int itype_in,

 int in_recl,int* icyc,FILE** ifp,

 char* flname,int* ios)

Argument list description:

argument type i/0 description

-------- ---- --- -------------------------------

instr char[12] i instrument acronym.

param char[12] i measure parameter.

iuars_day int i uars day. (e.g., sept 12, 1991

 is uars day 1, jan 1 1992 is

 uars day 112; jan 1 1993 is

 uars day 478)

iver_in int i data version.

icyc_max int i maximum cycle number to try.

itype int i set last 4 characters of input

 file name.

 1: prod

 2: bnbe

 3: bnle

 4: asci

in_recl int i record length (bytes) of file

 if fixed length.

icyc int i/o nominally 0 on input.

 if 0 on input, routine will

 assume an existing file. Cycles

 number will be incremented from

 1 to icyc_max until

 success. if existing file is

 found,icyc is returned.

ifp FILE** o pointer to file pointer

flname char[50] o flname of file.

ios int o status of open.

A.4.2 Level 1 C File Name Function (gen_l1_name_c)

The function routine in file gen_l1_name_c.c generates the file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version. This routine is called only by opn_l1_file_c.c, and users only need to link this routine.

A.4.3 Level 1 Sample C Driver

The following describes an example of a driver that calls the above routines.

A sample driver to use the above functions is provided. The file name containing the driver is

 get_solstice_l1_solar_str_c.c

and the compile and link file name is

 get_solstice_l1_solar_str_c.com

Upon executing this file, an executable is created in file

 get_solstice_l1_solar_str_c.exe

Use of this C program is similar to that for the corresponding Fortran program described earlier. Details are repeated here for convenience.

Upon running program

 get_solstice_l1_solar_str_c.exe

interactively, the following prompt appears on the screen:

enter instr,param(lwr case,no quotes)

begin uars day,end uars day

enter first data record number, last data record number

(-1 to do all data records)

file data version

file type (0:vms:prod,2:big endian,3:little endian)

write output to plot (0:no,1:yes)

An example of a user input to this prompt is

solstice solar 1225 1225 1 500 7 2 1

The different input variables are separated with blanks. The first string is the solstice instrument acronym, the second is the subtype acronym. The '1225 1225' select the begin and end UARS days (there is one file for each day) to read. UARS day number 1 is September 12, 1991; January 1 1992 corresponds to UARS day 112. The input '1 10' selects the first and last data records wanted (in this case the first 10 records). The '7' gives the file data version number, the '2' is used for the file name generation (2 denotes big endian). The last input, namely '1' chooses the option to write the portions of the selected records to a text file. A '0' does not produce a file.

With the above input, the program will read the first 500 data records of the level 1 data file named

 solstice_l1_ssolar_d1225.v0007_c01_bnbe

and write a text file named

 solstice_l1_ssolar_d1225.v0007_c01_asci

containing certain portions of data from the 10 selected records.

A.5 Additional Level 2 Fortran Software

A.5.1 Level 2 Fortran File Open Routine (opn_l2_file)

Routine opn_l2_file (file opn_l2_file.for) opens a UARS level 2 file with the proper attributes. It calls routine GEN_L2_NAME to generate the needed filename based on input values such as acronyms for the instrument and parameter, for the uars day number, and the data version number, which have been described above. Details are the same as described above in Section A.1.1 for the opn_l0_file routine.

Usage:

 CALL OPN_L2_FILE(INSTR,PARAM,IUARS_DAY,IVER_IN,

 & ICYC_MAX,ITYPE_IN,IN_RECL,ICYC,LUN,FLNAME,IVAR,

 & IDIRECT,IOS)

Argument list description:

ARGUMENT TYPE I/0 DESCRIPTION

-------- ---- --- -----------------------------------

INSTR CH*12 I INSTRUMENT ACRONYM.

PARAM CH*12 I MEASURE PARAMETER.

IUARS_DAY I*4 I UARS DAY. (E.G., SEPT 12, 1991 IS

 UARS DAY 1, JAN 1 1992 IS UARS

 DAY 112; JAN 1 1993 IS UARS DAY

 478)

IVER_IN I*4 I DATA VERSION NUMBER.

ICYC_MAX I*4 I MAXIMUM DATA CYCLE NUMBER TO TRY.

ITYPE_IN I*4 I USED TO DETERMINE LAST 4 CHARACTERS

 OF FILE NAME:

 0 OR 1: PROD

 2: BNBE

 3: BNLE

 4: ASCI

 ALSO USED FOR CONVERSION IF

 APPLICABLE.

 1: NOCONVERSION

 2: CONVERT = 'BIG ENDIAN'

 3: CONVERT = 'LITTLE ENDIAN'

IN_RECL I*4 I RECORD LENGTH (WORDS) OF

 FILE IF FIXED LENGTH.

 IF VALUE IS GT 0 FILE IS OPENED

 WITH RECL KEYWORD SET TO VALUE OF

 IN_RECL.

 IF VALUE IS ZERO, FILE WILL BE

 OPENED WITHOUT RECL KEYWORD, AND

 DEFAULT IS USED. FOR VARIABLE

 RECORDS,VALUES FOR VMS ARE:

 DEFAULTS:SEGMENTED:2048(BYTES)

 OTHERS:133

ICYC I*4 I/O SHOULD BE NOMINALLY SET TO 0.

 IF 0 ON INPUT, ROUTINE WILL

 TRY TO OPEN EXISTING FILE. CYCLES

 NUMBERS FROM 1 TO ICYC_MAX WIIL BE

 TRIED. IF EXISTING FILE IS FOUND,

 ICYC IS RETURNED. IF FILE NOT

 FOUND,

 ICYC IS INCREMENTED BY 1 UP TO

 ICYC_MAX.

 IF NOT ZERO ON INPUT, FILE IS

 ASSUMED NOT TO EXIST AND A NEW

 FILE IS OPENED

 USING THE VALUE IF ICYC.

LUN I*4 I/O LOGICAL UNIT NUMBER OF FILE.

 IF NOT ZERO ON INPUT, THE INPUT

 VALUE IS USED TO OPEN THE FILE.

 IF ZERO ON INPUT, LUN WILL

 BE SET TO 95 (INPUT) IF ICYC IS 0.

 AND TO 96(OUTPUT) IF ICYC IS NOT 0.

FLNAME CH*50 O FLNAME OF FILE.

IVAR I*4 I IF O, OPEN FOR FIXED RECORD LENGTH

 IF -1, OPEN WITH KEYWORD RECORDTYPE

 SET TO 'SEGMENTED'

 IF -2, OPEN WITH KEYWORD RECORDTYPE

 SET TO 'VARIABLE'

IDIRECT I*4 I INPUT 0:SEQUENTIAL ACCESS,1:DIRECT

IOS I*4 O STATUS AFTER ATTEMPT TO OPEN.

A.5.2 Level 2 Fortran File Name Routine (gen_l2_name)

Routine gen_l2_name (file gen_l2_name.for) generates the correct file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version number. This routine is called only by OPN_L2_FILE.FOR, and users only need to link this routine.

A.5.3 Level 2 Sample Fortran Driver and Link Procedure

The sample driver for reading level 2 files of subtype SOLAR is in file

 get_sol_l2_solar.for

and that for reading files of subtype STELLAR is in file

 get_sol_l2_stellar.for

The compile and link file names for these subtypes are

 link_solstice_solar.com

and

 link_solstice_stellar.com

respectively.

Upon executing these files this executables are created in files

 get_sol_l2_solar.exe

and

 get_sol_l2_stellar.exe

Upon running either of these programs it will prompt for the following

Information:

 enter instr, param(lower case, no quotes)

 begin uars day, end uars day

 first data record number, last data record number

 (-1 for both to read all records)

 data version

 in file type (0 or 1 = vms: 2 = big endian: 3 = little endian

 write output 0 = no; 1 = yes

An example of a user input to this prompt is

 'solstice' 'sol' 120 120 -1 -1 10 2 1

The different input variables are separated with blanks. The first string gives the solstice instrument acronym, the second gives the subtype acronym. The 120 120 select the begin and end UARS days to read. UARS day number 1 is September 12, 1991. January 1, 1992 corresponds to UARS day 120. The input -1 -1 selects the first and last data records, in this, case all the data records in the file. The 10 gives the file data version number, the 2 is used to indicate the input

file is in the big endian format. The last input, 1, will create a file for output. If a 0 is input no file will be created.

With the above input, the program will read all the records of the following SOLSTICE subtype SOLAR level 2 data file with the following name;

 SOLSICE_L2_SSOLAR_D0120.V0010_C01_BVBE

and will create a file for text output with a name of

 SOLSTICE_L2_SSOLAR_D0120.V0010_C01_ASCI

for the users selected output.

A.6 Additional Level 2 C Software

As in the Fortran case, the required software consists of one routine which users can call to read the level 2 file of subtype L2OUT. Additional software in the form of a sample driver, a file name generation routine, and a file open routine are provided. A procedure is also provided to link the driver and routines. The resulting executable can be used to read the data and write selected portions to an output file for analysis or plots.

A.6.1 Level 2 C File Open Routine opn_l2_file_c.

The C function routine opn_l2_file_c.c opens a UARS level 1 file with the proper attributes. It calls routine gen_l2_name_c to generate the filename name based on input values such as instr, param, uars_day, version, which have been described above, and in more detail in Section 5. The file name contains a data version number that is input by the user. For each version, there is a cycle number that is greater than or equal to 1. Users need not know the cycle number(as long as the variable ICYC_MAX is set to be larger than the cycle number). The software will begin with cycle 1 and continue with incremented cycle numbers until a file is successfully opened or until icyc_max is reached.

Usage:

 opn_l2_file_c(char* instr,char* param,int iuars_day,int iver_in,

 int icyc_max,int itype_in,int in_recl,int* icyc,FILE** ifp,

 char* flname,int* ios)

Argument list description:

 argument type
 i/0 description

 -------- ----- --- -----------------------------------

 instr char[12] i instrument acronym.

 param char[12] i measure parameter.

 iuars_day int i uars day. (e.g., sept 12, 1991 is

 uars day 1, jan 1 1992 is uars day

 112; jan 1 1993 is uars day 478)

 iver_in int i data version.

 icyc_max int i maximum cycle number to try.

 Itype int i set last 4 characters of input file

 name.

 1: prod

 2: bnbe

 3: bnle

 4: asci

 in_recl int i record length (bytes) of file if

 fixed length.

 icyc int i/o nominally 0 on input.

 if 0 on input, routine will assume

 an existing file. cycles number

 will be incremented from 1 to

 icyc_max until success. if existing

 file is found, icyc is returned.

 ifp FILE** o pointer to file pointer

 flname char[50] o flname of file.

 ios int o status of open.

A.6.2 Level 2 C File Name Routine gen_l2_name_c

Function routine gen_l2_name_c.c generates the correct file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version. This routine is called only by opn_l2_file_c.c, and users only need to link this routine.

A.6.3 Level 2 Sample C Driver and Link Procedure

These routines provides users with access to the SOLSTICE level 2 data (subtypes SOLAR and STELLAR) files. Also provided are function routines that create file names and opens the files. These could be useful in cases where data from many days (files) are needed. The following describes an example of a driver that calls the routines to open

files and create correct file names based on input data such as instrument, subtype, UARS day, data version, and calls the appropriate data read routines.

The sample driver is;.

 Chw_sol_l2_stellar_c.c For reading subtype STELLAR data files.

and,

 chw_sol_l2_solar_c.c For reading subtype SOLAR data files.

The compile and link file name is;

 link_solstice_solar_c.com or link_solstice_stellar_c.com

Upon invoking this file, an executable is created in file

 chw_sol_l2_solar_c.exe or chw_sol_l2_stellar_c.exe

Upon running ether of these programs it will prompt for the following

information;

 enter instr, param(lower case, no quotes)

 begin uars day, end uars day

 first data record number, last data record number

 (-1 for both to read all records)

 data version

 in file type (0 or 1 = vms: 2 = big endian: 3 = little endian

 write output 0 = no; 1 = yes

An example of a user input to this prompt is

 'solstice' 'sol' 120 120 -1 -1 10 2 1

The different input variables are separated with blanks. The first string gives the solstice instrument acronym, the second gives the subtype acronym. The 120 120 select the begin and end UARS days to read. UARS day number 1 is September 12, 1991. January 1, 1992 corresponds to UARS day 120. The input -1 -1 selects the first and last data records, in this, case all the data records in the file. The 10 gives the file data version number, the 2 is used to indicate the input

file is in the big endian format. The last input, 1, will create a file for output. If a 0 is input no file will be created.

With the above input, the program will read all the records of the following SOLSTICE subtype SOLAR level 2 data file with the following name;

 solsice_l2_ssolar_d0120.v0010_c01_bvbe

and will create a file for text output with a name of

 solstice_l2_ssolar_d0120.v0010_c01_asci

for the users selected output.

PAGE
1

