DRAFT / SSAI

November 1, 2002

 DRAFT

This is a work-in-progress document describing the access of level 0 and level 1 data from the Halogen Occultation Experiment (HALOE) instrument, which is part of a complement of instruments on the Upper Atmosphere Research Satellite (UARS). HALOE primarily measures important stratospheric minor constituents and temperature. Originally, the data were (are) generated for computer systems compatible with the Compaq (Digital Equipment) Computer Corporation VAX/Alpha computers running under the VMS operating system. The following describes those data that are converted to be compatible with Silicon Graphics Incorporated (SGI) computer systems running under IRIX. They are therefore also compatible with the facilities of the GSFC Distributed Active Archive Center (DAAC). The following also describes software for the access of the converted data files.

SSAI

31.0 Introduction

1.1 Data Products and File Names.
3
1.1.1 Level 0 Data Products and File Names
4
1.1.2 Level 1 Data Products and File Names
4
1.2 Software Products and File Names.
5
1.2.1. Level 0 Software
5
1.2.2 Level 1 Software
5
1.3 Additional Software
6
1.3.1 Additional level 0 Software
6
1.3.2 Additional level 1 Software
7
2.0 Related Documentation
7
3.0 HALOE Files and Data Structures
8
3.1 HALOE Level 0 File and Data Structure
8
3.2 HALOE Level 1 Files and Data Structures
8
4.0 Access Software
9
4.1 General Considerations.
9
4.1.1 Arrays
10
4.1.2 Fill Data.
10
4.2 Level 0 Fortran Software
10
4.2.1 Fortran Access Routine to Read Level 0 Data (fth_readl0)
10
4.3 Level 0 C Software
11
4.3.1 C Function Routine to Read Level 0 Data (mcb_readl0_c)
11
4.4 Level 1 Fortran Software
12
4.3.1 Level 1 Fortran Header Access Routine (fth_gthead)
12
4.3.2 Level 1 Fortran Access Routine to Read TRAK Data (fth_gttrak)
13
4.3.3 Level 1 Fortran Routine to Read SCAN Data (fth_gtscan)
14
4.3.4 Level 1 Fortran Access Routine to Read CAL Data (fth_gtcal)
14
4.4 Level 1 C Software
15
4.4.1 Level 1 C Function to Read Header Record (fth_rwhead_c)
15
4.4.2 Level 1 C Function to Read TRAK Data Record (fth_rdrak_c)
15
4.4.3 Level 1 C Function to Read SCAN Data Record (fth_rdscan_c)
16
4.4.4 Level 1 C Function to Read CAL Data Record (fth_rdcal_c)
17
4.4.5 Level 1 C Access Array Transform Routines
17
Appendix: Additional Software
19
A.1 Additional Level 0 Fortran Software
19
A.1.1 Level 0 Fortran File Open Routine (opn_l0_file)
19
A.1.2 Level 0 Fortran File Name Routine (gen_l0_name)
20
A.1.3 Level 0 Sample Fortran Driver and Link Procedure
21
A.2 Additional Level 0 C Software.
22
A.2.1 Level 0 C File Open Function Routine (opn_l0_file_c)
22
A.2.2 Level 0 C File Name Function Routine (gen_l0_name_c)
23
A.2.3 Level 0 Sample C Driver and Link Procedure
23
A.3 Additional Level 1 Fortran Software.
24
A.3.1 Level 1 Fortran File Open Routine (opn_l1_file)
24
A.3.2 Level 1 Fortran File Name Routine (gen_l1_name)
26
A.3.3 Level 1 Sample Fortran Driver and Link Procedure
26
A.4 Additional Level 1 C Software.
27
A.4.1 Level 1 C File Open Function
27
A.4.1 Level 1 C File Open Function (opn_l1_file_c)
27
A.4.2 Level 1 C File Name Function (gen_l1_name_c)
28
A.4.3 Level 1 Sample C Driver and Link Procedure
28

1.0 Introduction
The following describes software and issues related to the access of level 0 and level 1 data from the Upper Atmosphere Research Satellite (UARS). The original files were created to be compatible with the Compaq (Digital Equipment) Computer Corporation VMS operating system, on the UARS Central Data Handling Facility (CDHF). The following describes those data that are converted to be compatible with Silicon Graphics Incorporated (SGI) computer systems running under IRIX. They are also compatible with the facilities of the GSFC Distributed Active Archive Center (DAAC). The following also describes software for the access of the converted data files.

The instrument calibration data files will be included at a later date. The conversion of HALOE level 2 and level 3 data is not part of this activity.

The following describes software and issues related to the access of data from the Halogen Occultation Experiment (HALOE) instrument, which is part of a complement of instruments on the Upper Atmosphere Research Satellite (UARS). HALOE primarily measures a variety of important minor constituents, mainly in the earth’s stratosphere. Currently, this document applies to HALOE level 0 and level 1 data files that have been converted to be compatible with Silicon Graphics computers running under IRIX. The converted files are therefore also compatible with the facilities of the NASA GSFC Distributed Active Archive Center (DAAC) facilities. The original files were created by UARS production processing running under the Compaq (Digital Equipment Corporation (DEC)) VMS operating system, on the UARS Central Data Handling Facility (CDHF). Corresponding activities for the UARS instrument calibration data will be included at a later date. The conversion of HALOE level 2 and level 3 data is not part of this activity.

The software that does the actual conversion of the original files is also not part of this description. The following describes the converted files and the software that are provided to access the converted files. Routines to read the converted file are provided in both Fortran and C. The original data were produced using Fortran code.

1.1 Data Products and File Names.

The current data products consist of the level 0 and level 1 HALOE data files. Basically, the level 0 data are the telemetry data that have been sorted and stored. Level 1 data include that which have been transformed from counts to engineering units. Although not part of this activity, HALOE level 2 data are retrieved from the level 1 data and include products used for scientific analysis, such as constituent mixing ratios and temperature. The data files within a data level may be further divided into subtypes, such as the specific parameter(s) measured. As described in more detail below, file names are based on the data level, on the data type (subtype), and on the day of year, among other things.

1.1.1 Level 0 Data Products and File Names

Nominally, there are 15 types of UARS level 0 files for each day. Of these, 5 files are pertinent to HALOE. Examples are as follows

 haloe_l0_d2370.v0002_c01_prod

 engineering_l0_d1101.v0002_c01_prod

 spacecraft_l0_d2373.v0002_c01_prod

 obc_l0_d1673.v0002_c01_prod

 quality_l0_d1644.v0002_c01_prod

The UARS level 0 file name convention begins with the type acronym (e.g., haloe, engineering,...), followed by the level(i.e., l0). Next is the UARS day number (e.g.,2370; September 12, 1991 corresponds to UARS day number 1, January 19 1992 is UARS day 130). This is followed by the data version number (0002), and then by the cycle number (01). The data version number corresponds to the software that produced the data. For each data version, there is a cycle number that is nominally 1. If reprocessing is needed for the same version, the cycle is incremented. The most recent data correspond to the highest version and cycle numbers. The last four characters of the file name are always 'prod'.

In the above, file haloe_l0_d2370.v0002_c01_prod is the HALOE level 0 data for UARS day 2370, data version 0002, cycle 01, while the other 4 types of files contain complementary flight data.

1.1.2 Level 1 Data Products and File Names

Nominally, level 1 data files of various subtypes are generated for each day. For HALOE, the files with subtype FINAL contains the essential measurements needed to generate level 2 data. As noted below, although there are many other level 1 files of subtypes other than FINAL, those other need not be archived, as they are intermediate files in the production processing which generate the files of subtype FINAL. An example of a level 1 file of subtype FINAL is

 haloe_l1_sfinal_d0125.v0018_c01_bvbe

The UARS level 1 file name convention begins with the instrument acronym (HALOE), followed by the level (L1), which in turn is followed by the subtype (FINAL). Next is the UARS day number(0125; e.g., September 12, 1991 corresponds to UARS day number 1, January 19 1992 is UARS day 130) and the data version number(0018), followed by the cycle number(01). The data version number is set by the instrument principal investigator, and corresponds to the software that produces the data. The data cycle number is determined by the UARS production processing. For each data version, there is a cycle number that is nominally 1. If reprocessing is needed for the same version, the cycle is incremented.

The last four characters of the file name were 'PROD' as originally generated on the UARS CDHF, but have been replaced here by 'BVBE' to denote that the file has been converted.

1.2 Software Products and File Names.

The software products are divided into required software and additional products. The required software consists of access functions/routines in both Fortran and C that can be used to read the files. Additional software are those which are provided as a convenience for the user and is not formally part of this software package. Examples of additional software are sample drivers that use the required software, and routines that generate the proper file names and open the files. Additional software is described in the Appendix.

Because some of the software is made to run under both IRIX and under VMS, for the sake of consistency, the following file name conventions are used for the software. File names for Fortran code end in '.for', and files written in C will end in '.c'. Link scripts and executable names end in '.com' and '.exe', respectively.

The names of the software modules are listed next. The software is given in terms of subroutine/function names or file names. The subroutine/function names and file names are used interchangeably, but the latter also contain extensions such as '.for', as noted above.

1.2.1. Level 0 Software

The following routine/function can be used to read each of the 5 level 0 files listed above. File names are given in parenthesis.

Routine name Description

(file name)

------------ -----------

fth_readl0 Fortran routine to read level 0 files of

(fth_readl0.for) all types

mcb_readl0_c C code to read level 0 files of all types

(mcb_readlo_c.c)

1.2.2 Level 1 Software

Routines are provided to read header and data records for each of the files given above. There are 3 kinds of data records within a file, namely, TRAK, SCAN, and CAL data. For the header records, the same routine can be used. For the data records, a different routine is needed for each type, as follows:

Routine name Description

(file name)

------------ -----------

fth_gthead Fortran routine to read level 1

(fth_gthead.for) header records

fth_gttrak Fortran routine to read level 1

(fth_gttrak.for) trak data records

fth_gtscan Fortran routine to read level 1

(fth_gtscan.for) scan data records

fth_gtcal Fortran routine to read level 1

(fth_gtcal.for) cal data records

fth_rwhead_c c code to read level 1

(fth_rwhead_c.c) header records

fth_rdtrak_c c code to read level 1

(fth_rdtrak_c.c) trak data records

fth_rdscan_c c code to read level 1

(fth_rdscan_c.c) scan data records

fth_rdcal_c c code to read level 1

(fth_rdcal_c.c) cal data records

The names in parenthesis are file names.

1.3 Additional Software

As noted earlier, additional software is provided as a convenience to users, but are not formally part of the software package per say. Used together with the access routines, they can be linked into executables to read and list the data. Here, they are listed for completeness. Details are given in the Appendix.

1.3.1 Additional level 0 Software
Routine Name Description

(file name)

----------- -----------

get_l0 Fortran sample driver for using level 0

(get_l0.for) routines

opn_l0_file Fortran code to open level 0 files

(opn_l0_file.for)

gen_l0_name Fortran code to generate level 0 file names

(gen_l0_name.for)

get_l0_c C sample driver for using level 0

(get_l0_c.c) function routines

opn_l0_file_c C code to open level 0 files

(opn_l0_file_c.c)

gen_l0_name_c C code to generate level 0 file names

(gen_l0_name_c.c)

1.3.2 Additional level 1 Software

Routine Name Description

(file name)

----------- -----------

get_haloe_l1_final Fortran sample driver to use access

(get_haloe_l1_final.for) routines described above

opn_l1_file.for Fortran routine to open level 1 files

(opn_l1_file.for)

gen_l1_name Fortran code to generate level 1 file names

(gen_l1_name.for) based on subtype, day, version number

get_haloe_l1_final_c c sample driver to use the

(get_haloe_l1_final_c.c) level 1 access routines

opn_l1_file_c C code to open level 1 files

(opn_l1_file_c.c)

gen_l1_name_c C code to generate level 1 file names

(gen_l1_name_c.c) based on day number, subtype, version.

As noted above, for C, routines are also provided to transform the multidimensional arrays so that the indices are consistent with those of the Fortran arrays (which conform to the documentation). Because they are used only by routines provided here, users need only link the following functions, and need not know how to invoke them. The array transform routines are as follows:

 ch_for_c_mtrx_2 (file ch_for_c_mtrx_2.c)

 test_nan_c (file test_nan_c.c)

The names in parenthesis are the corresponding file names.

2.0 Related Documentation
A general description of the scientific goals and the instrument is found in the following journal paper:

Russell, James M., III, Larry L Gordley, Jae H. Park, S. Roland Drayson, W. Donald Hesketh, Ralph J. Cicerone, Adrian F. Tuck, John E. Frederick, John E. Harries, and Paul J. Crutzen, THE HALOGEN OCCULTATION EXPERIMENT, J. Geophys. Res., 98,10,7777-10,797, June 20, 1993.

Currently, there is no available HALOE document describing the contents and structure of the level 1 data. There is a HALOE users guide which was written for production processing, titled

 HALOE HALOGEN OCCULTATION EXPERIMENT P.I. DATA PROCESSING SOFTWARE

 USER'S GUIDE VERSION 3

This document is contained in file HALOE_USER_GUIDE_91FEB04.DOC

Another document, titled SOFTWARE SUPPORT SERVICES, COMPUTER SCIENCES CORPORATION, OCTOBER, 1995, describes access routines for UARS data levels 0 and 3, but not for levels 1 and 2. The contents can be found in file

 UCSS_PG_OCT95.MEM

3.0 HALOE Files and Data Structures

3.1 HALOE Level 0 File and Data Structure

Unlike the converted level 1 files, the level 0 files are unchanged from their original VMS versions. The contents of level 0 files are mostly byte-oriented, and the relatively few data words that need to be converted are done so by the read routine that is provided and described below. Consequently, users should only use the included software for this purpose.

All Level 0 files contain fixed length records, and data access is direct. The record lengths for relevant file types are as follows

 TYPE RECORD LENGTH (BYTES)

 ---- ---------------------

 haloe 16448

 engineering 8256

 spacecraft 21568

 obc 14400

 quality 2532

For more details, refer to the document

 UARS CDHF SOFTWARE SYSTEM (UCSS) PROGRAMMER'S GUIDE TO PRODUCTION

 SOFTWARE SUPPORT SERVICES, COMPUTER SCIENCES CORPORATION,OCTOBER,1995.

The contents can be found in file

 ucss_pg_oct95.mem

3.2 HALOE Level 1 Files and Data Structures

As noted earlier, an example of the a level 1 HALOE file is

 haloe_l1_sfinal_d0125.v0018_c01_bvbe

This data file of subtype FINAL is the primary level 1 product and is passed to the level 2 programs. It is made up of a TRAK header record, followed by a TRAK data record, then a SCAN header record, followed by a SCAN data record, then a CAL header record, followed by a CAL data record. This sequence is repeated over the rest of the file. The original files consist of variable-length records written in binary. They are VMS segmented records and for UARS day 125, the maximum record length is 2044 bytes. Data in the converted files appear in the same order and the same records as in the original VMS files, and sequential access in reading the records is necessary. The converted files are no longer segmented in record type, but the record lengths remain variable, and the order of the data and the records remain the same as the original.

Currently, there is no available documentation on the level 1 data per se.

Examples of other types of catalogued level 1 HALOE files are

 HALOE_L1_SAVERAGE_D0120.V0005_C02_PROD

 HALOE_L1_SBALANCE_D0120.V0018_C01_PROD

 HALOE_L1_SCALRISE_D0120.V0018_C01_PROD

 HALOE_L1_SCALSET_D0120.V0018_C01_PROD

 HALOE_L1_SCOMMENTS_D0120.V0018_C01_PROD

 HALOE_L1_SFINAL_D0120.V0018_C01_PROD

 HALOE_L1_SGAINCAL_D0120.V0018_C01_PROD

 HALOE_L1_SHALOEOADATA_D0120.V0018_C01_PROD

 HALOE_L1_SLOG_D0120.V0005_C02_PROD

 HALOE_L1_SLZPTIME_D0120.V0018_C01_PROD

 HALOE_L1_SQC_D0120.V0005_C02_PROD

 HALOE_L1_SSCANRISE_D0120.V0018_C01_PROD

 HALOE_L1_SSCANSET_D0120.V0018_C01_PROD

 HALOE_L1_SSTATUS_D0120.V0018_C01_PROD

 HALOE_L1_STHERMALDRIFT_D0120.V0010_C01_PROD

 HALOE_L1_STRAKRISE_D0120.V0018_C01_PROD

 HALOE_L1_STRAKSET_D0120.V0018_C01_PROD

However, these types are not needed for archival purposes. They are used as input to other level 1 processing software.

4.0 Access Software

Software for accessing the data is provided in the form of Fortran routines and C functions. For consistency, because software is provided in both Fortran and C, and because some of the software are made to run under both IRIX and under VMS, the following name conventions are used for the software: a) file names for Fortran code end in '.for', and files written in C end in '.c'; b) link scripts and executable file names end in '.com' and '.exe', respectively.

4.1 General Considerations.

Software for accessing the data is provided in the form of Fortran routines and C functions. For consistency, because software is provided in both Fortran and C, and because some of the software are made to run under both IRIX and under VMS, the following name conventions are used for the software: a) file names for Fortran code end in '.for', and files written in C end in '.c'; b) link scripts and executable file names end in '.com' and '.exe', respectively.

4.1.1 Arrays

The indices of arrays that are read by Fortran routines begin with the same values as in the original VMS routines. Arrays that are read by C programs begin with index 0.

For multidimensional arrays, C and Fortran are different as to which index varies fastest (row major, row minor). The C access routines which are provided accounts for this, so that the various indices of the arrays have the same meaning for both C and Fortran routines, and conform to the original documentation.

4.1.2 Fill Data.

Originally, the UARS processing agreed to use the not-real-number (HEX X’8000’) for fill data. However, HALOE has not needed to use this value, and users need not take preventive measures.

4.2 Level 0 Fortran Software

4.2.1 Fortran Access Routine to Read Level 0 Data (fth_readl0)

Because the level 0 data files are unchanged from the original VMS versions, users should use only fth_readl0 (file fth_readl0.for), or its C equivalent, for reading the level 0 data on systems which conform to the big endian addressing convention (e.g., SGI, SUN). The level 0 data files are essentially byte-oriented, and only the first 64 bytes of the data records (the data record header) need be converted. It was judged that this conversion should be done by the read routine. Record access is direct, and record 1 is the file label record (all ASCII) followed by data records. The first 64 bytes of each data record (the data record header) are mostly information in integer words, and are converted by the read software. The rest of each data record is byte-oriented.

Usage:

 CALL FTH_READL0(LUN_RD,IREC,IREC_LEN,L0_BUFF,

 & ISWAP,IOS_RD)

 ARGUMENT DESCRIPTION

 ARGUMENT TYPE I/O DESCRIPTION

 -------- ---- --- -----------------------------

 LUN_RD I*4 I LOGICAL UNIT OF INPUT FILE

 IREC I*4 I RECORD TO READ (1 OR GREATER)

 IREC_LEN I*4 I RECORD LENGTH IN BYTES

 claes 24640

 haloe 16448

 hrdi 19520

 isams 8256

 mls 10304

 pem 28736

 solstice 2532

 susima 8256

 susimb 8256

 windii 16448

 acrim 4160

 engineering 8256

 spacecraft 21568

 obc 14400

 quality 2532

 L0_BUFF CHAR*1 O BUFFER CONTAINING LEVEL 0 DATA

 (IREC_LEN)

 ISWAP I*4 I 0:FOR LITTLE ENDIAN COMPUTERS

 1:FOR BIG ENDIAN COMPUTERS

 IOS_RD I*4 O READ STATUS 0:NO ERROR

This routine calls 3 other routines that are used to convert from little endian to big endian standards, namely,

 swap32 (swap32.for)

 swap16 (swap16.for)

 swap64 (swap64.for)

The file names are in parenthesis). Users need not know how to call these routines explicitly as they are used only by fth_readl0.

4.3 Level 0 C Software

4.3.1 C Function Routine to Read Level 0 Data (mcb_readl0_c)
Because the level 0 data files are unchanged from the original VMS versions, users should use only mcb_readl0_c (file mcb_readl0_c.c), or its Fortran equivalent, for reading the level 0 data on systems which conform to the big endian addressing convention (e.g., SGI, SUN).

Usage:

void mcb_readl0_c(FILE *fp_rd,int irec,int in_recl_byte,

 signed char *l0_buff,int iswap,int *ios_rd);

 mcb_readl0_c(fp_rd,irec,in_recl_byte,&l0_buff[0],iswap,&ios_rd);

 THIS ROUTINE READS THE UARS LEVEL 0 DATA. IT ASSUMES

 THAT THE DATA FILE CORRESPONDS TO THE ORIGINAL, VMS

 DATA FILES. IN ORDER TO INTERPRET CORRECTLY, FOR

 BIG ENDIAN COMPUTERS, ISWAP SHOULD BE SET TO 1.

 ARGUMENT DESCRIPTION

 ARGUMENT TYPE I/O DESCRIPTION

 -------- ---- --- -----------------------------

 fp_rd FILE* I pointer to input file-buffer-string

 irec I*4 I RECORD NUMBER TO READ (1 OR GREATER)

 irec_len I*4 I RECORD LENGTH IN BYTES

 l0_buff CHAR*1 O BUFFER CONTAINING LEVEL 0 DATA

 iswap I*4 I 0:FOR LITTLE ENDIAN COMPUTERS

 1:FOR BIG ENDIAN COMPUTERS

 ios_rd I*4 O READ STATUS 0:NO ERROR

This routine calls 3 other routines that are used to convert from

little endian to big endian standards, namely,

 swap32_c (swap32_c.c)

 swap16_c (swap16_c.c)

 swap64_c (swap64_c.c)

Users need not know how to invoke these routines explicitly as they are used only by mcb_readl0_c.

4.4 Level 1 Fortran Software

As noted earlier, the software consists of four routines which users can call to read the level 1 header records and three types of data records, respectively, in files of subtype FINAL. The files of subtype FINAL contain variable length records and must be read sequentially. The three types of data records are TRAK data, SCAN data, and CAL data. Each data record is preceded by a header record, so there are as many calls to read header records as there are to read data records. Unlike other instruments on UARS, primary HALOE measurements occur only at sunrise or sunset. These are referred to as events and the file records are based on these events. Additional software in the form of a sample driver, a file name generation routine, and a file open routine is provided, as described below. Procedures are also provided to link the driver and routines. The resulting executable can be used to read the data and write selected portions to an output file for analysis or plots. This is described in the Appendix.

The routines described below are based on code culled from various parts of the HALOE production processing software. The values of the data that are read are available via common blocks. Because there is currently no independent documentation for the level 1 data, users should review the in-line comments of the provided software, including the sample driver that is provided and described below.

4.3.1 Level 1 Fortran Header Access Routine (fth_gthead)

Routine fth_gthead (file fth_gthead.for) reads the HALOE level 1 header record that precedes each data record. It must be called before attempting to read each data record.

 Usage:

 CALL FTH_GTHEAD (LUN, IRD_CNTL, IOS_RD)

Argument description.

 NAME TYPE I/O DESCRIPTION

 ---- ---- --- -----------------------------

 LUN I*4 I LOGICAL UNIT FOR INPUT FILE

 IRD_CNTL I*4 I ALWAYS 0

 IOS_RD I*4 O READ ERROR STATUS. 0:NO ERROR

The code is based on that culled from HALOE production processing software. Variables that are read from the file are available via common block STD_HEADER, i.e.,

 COMMON / STD_HEADER / HEAD, NHEAD, NHDLEV, HDTYP

Local variables are equivalenced to array HEAD(150).

4.3.2 Level 1 Fortran Access Routine to Read TRAK Data (fth_gttrak)

Routine fth_gttrak (file fth_gttrak.for) reads the TRAK data record that follows each header record of the HALOE level 1 data (subtype FINAL). The preceding header record must be read before attempting to read this data record.

Usage:

 CALL FTH_GTTRAK(LUN,ZENCOR,ZENDIFI,YAWI,ROLLI,PITCHI,

 & DRIFT_SIG,MM_COR,MM_SCALE,SRCGRD,CSSAZI,

 & IRD_CNTL,IOS_RD)

Argument list description

 NAME TYPE I/O DESCRIPTION

 ---- ---- --- -----------------------------

 LUN I*4 I LOGICAL UNIT OF INPUT FILE

 ZENCOR R*4(491) O oblateness/eccentricity

 correction to true zenith angle

 ZENDIFI R*4(491) O Gridded zenith correction [arcmin]

 YAWI R*4(491) O Gridded yaw [arcmin]

 ROLLI R*4(491) O Gridded roll [arcmin]

 PITCHI R*4(491) O Gridded pitch [arcmin]

 DRIFT_SIG R*4(491,12) O Drift correction signal for each

 channel:

 MM_COR R*4(491,4) O Mismatch correction signal for each

 dV channel

 MM_SCALE R*4(4) O Mismatch scale factor for each Dv

 channel

 SRCGRD R*4(491,12) O Source function for each channel

 CSSAZI R*4(491) O calibrated CSSAZ (arcminutes from

 solar center

 IRD_CNTL I*4 I ALWAYS 0

 IOS_RD I*4 O READ ERROR STATUS. 0:NO ERROR

Most of the variables that are read from the file are available via the common block CNDNSDAT, i.e.,

 COMMON / CNDNSDAT / RIN, NRIN

The array RIN(491,230) is equivalenced to the individual data variables. Currently, there is no documentation available from HALOE. Therefore users should examine the comments which are provided in the software, including the sample driver, which is given below.

4.3.3 Level 1 Fortran Routine to Read SCAN Data (fth_gtscan)

Routine fth_gtscan (file fth_gtscan.for) reads the SCAN data record that follows each corresponding HEADER record of the HALOE level 1 data (subtype FINAL). The preceding HEADER record must be read before attempting to read this data record.

Usage:

 CALL FTH_GTSCAN (LUN,IRD_CNTL,IOS_RD)

 NAME TYPE I/O DESCRIPTION

 ---- ---- --- -----------------------------

 LUN I*4 I LOGICAL UNIT FOR INPUT FILE

 IRD_CNTL I*4 I ALWAYS 0

 IOS_RD I*4 O READ ERROR STATUS. 0:NO ERROR

Variables that are read from the file are available via common block CNDNSDAT, i.e.,

 COMMON / CNDNSDAT / RIN, NRIN

The array RIN(491,230) is equivalenced to the individual data variables. Currently, there is no documentation available from HALOE. Therefore users should examine the comments which are provided in the software, including the sample driver, which is given below.

4.3.4 Level 1 Fortran Access Routine to Read CAL Data (fth_gtcal)

Routine fth_gtcal (fth_gtcal.for) reads the SCAN data record that follows each corresponding HEADER record of the HALOE level 1 data (subtype FINAL). The preceding HEADER record must be read before attempting to read this data record.

Usage:

 CALL FTH_GTCAL(LUN,IRD_CNTL,IOS_RD)

 NAME TYPE I/O DESCRIPTION

 ---- ---- --- -----------------------------

 LUN I*4 I LOGICAL UNIT FOR INPUT FILE

 IRD_CNTL I*4 I ALWAYS 0

 IOS_RD I*4 O READ ERROR STATUS. 0:NO ERROR

Variables that are read from the file are available via the common block L1CAL, i.e.,

 COMMON / L1CAL /

Currently, there is no documentation available from HALOE. Therefore users should examine the comments which are provided in the software, including the sample driver, which is given below.

4.4 Level 1 C Software

As in the Fortran case, the required software consists of four routines which users can call to read the level 1 header and data records. Additional software in the form of a sample driver, a file-name generation routine, and a file open routine are provided. A procedure is also provided to link the driver and routines. The resulting executable can be used to read the data and write selected portions to an output file for analysis or plots.

4.4.1 Level 1 C Function to Read Header Record (fth_rwhead_c)

C function fth_rwhead_c (file fth_rwhead_c.c) reads the HEADER record that precedes each data record. It must be called before attempting to read each data record. The code is based on that culled from HALOE production processing software.

Usage:

 void fth_rwhead_c(FILE* ifp,char *label,int ird_cntl,int* ios_rd)

Argument list description:

 NAME TYPE I/O DESCRIPTION

 ---- ---- --- -----------------------------

 ifp FILE pointer I FILE POINTER FOR INPUT FILE

 ird_cntl int I SHOULD ALWAYS BE 1

 ios_rd *int O READ ERROR STATUS. 0:NO ERROR

Variables that are read from the file are available through global structured records. These include

 union record hd, head_eqv which lead to variables in hd.head_eqv

Currently, there is no documentation available from HALOE. Therefore users should examine the comments which are provided in the software, including the sample driver, which is given below.

As noted for the corresponding Fortran access routine, there is currently no independent documentation available which describe the variables other than the in-line comments of the original HALOE Fortran code.

4.4.2 Level 1 C Function to Read TRAK Data Record (fth_rdrak_c)

C function routine fth_rdtrak_c (file fth_rdtrak_c.c) reads the TRAK data record that follows each HEADER record.

Usage:

 void fth_rdtrak_c(FILE* ifp,float* zencor,float* zendifi,

 float* yawi,float* rolli,float* pitchi,float drift_sig[491][12],

 float mm_cor[491][12],float* mm_scale,float srcgrd[491][12],

 float* cssazi,int ird_cntl,int* ios_rd)

Argument list description

 NAME TYPE I/O DESCRIPTION

 ---- ---- --- ----------------------------------

 ifp FILE* ifp i file pointer for opened input file

 zencor *float[491] o oblateness/eccentricity

 correction to true zenith angle

 zendifi *float[491] o gridded zenith correction

 [arcmin]

 yawi *float[491] o gridded yaw [arcmin]

 rolli *float[491] o gridded roll [arcmin]

 pitchi *float[491] o gridded pitch [arcmin]

 drift_sig *float[491][12] o drift correction signal for each

 channel:

 mm_cor *float[491][4] o mismatch correction signal for

 each dv channel

 mm_scale *float[4] o mismatch scale factor for each dv

 channel

 srcgrd *float[491][12] o source function for each channel

 cssazi *float[491] o calibrated cssaz (arcminutes from

 solar center

 ird_cntl int i should have the value 1

 ios_rd *int o i/o error status. 0:no error

The code is based on that culled from HALOE production processing software. Variables that are read from the file are available through global structured records. This includes the record

 rin_rec.rin_eqv

Currently, there is no documentation available from HALOE. Therefore users should examine the comments which are provided in the software, including the sample driver, which is given below.

4.4.3 Level 1 C Function to Read SCAN Data Record (fth_rdscan_c)

C function routine fth_rdscan_c (fth_rdscan_c.c) reads the SCAN data record which follows each corresponding HEADER record of the HALOE level 1 data (subtype FINAL). The preceding HEADER record must be read before attempting to read the data record.

Usage:

 fth_rdscan_c (FILE* ifp,int ird_cntl,int* ios_rd)

Argument list description:

 NAME TYPE I/O DESCRIPTION

 ---- ---- --- -----------------------------

 ifp FILE pointer I FILE POINTER FOR INPUT FILE

 ird_cntl int I SHOULD ALWAYS BE 1

 ios_rd *int O READ ERROR STATUS. 0:NO ERROR

Variables that are read from the file are available via global variables in structured records. This includes the record

 rin_rec.rin_eqv

Currently, there is no documentation available from HALOE. Therefore users should examine the comments which are provided in the software, including the sample driver, which is given below.

4.4.4 Level 1 C Function to Read CAL Data Record (fth_rdcal_c)

C function routine fth_rdcal_c (file fth_rdcal_c.c) reads the CAL data record which follows each corresponding HEADER record of the HALOE level 1 data (subtype FINAL). The preceding HEADER record must be read before attempting to read this data record.

Usage:

 void fth_rdcal_c(FILE* ifp,int ird_cntl,int* ios_rd);

Argument list description:

 NAME TYPE I/O DESCRIPTION

 ---- ---- --- -----------------------------

 ifp FILE pointer I FILE POINTER FOR INPUT FILE

 ird_cntl int I SHOULD ALWAYS BE 1

 ios_rd *int O READ ERROR STATUS. 0:NO ERROR

Variables that are read from the file are available via global variables in structured records

This includes the record

 l1cal_rec

Currently, there is no documentation available from HALOE. Therefore, users should examine the comments that are provided in the software, including the sample driver, which is given below.

4.4.5 Level 1 C Access Array Transform Routines

Because C and Fortran storage for multidimensional arrays are not consistent with each other, software is needed to transform the multidimensional arrays after reading from disk so that they can be interpreted in the same manner by both C and Fortran. These routines are

 ch_for_c_mtrx_2 (file ch_for_c_mtrx_2.c)

and test_nan_c (file ch_for_mtrx_2.c)

Users do not need to know how to use these routines, as they are called only by the function routines described above. Using the link procedure file given in Section 4.1.2.3 will automatically link these routines.

Appendix: Additional Software

For convenience, sample software to use the file access software that has been described above is described in this Appendix. It should be noted that the software described is are not a formal part of the required software package, and are provided only as a convenience to users. The software described below consists of sample drivers, and functions and routines that generate file names and open the files. These are provided in Fortran and C.

This software, combined with the access software described earlier in the main text, constitute enough code which can be linked into executables. Link procedures are also provided and described below.

A.1 Additional Level 0 Fortran Software

A.1.1 Level 0 Fortran File Open Routine (opn_l0_file)

The Fortran routine opn_l0_file (file opn_l0_file.for) opens a UARS level 0 file with the proper attributes. It calls routine gen_l0_name (file gen_l0_name.for) to generate the needed filenames based on user-input values such as the instrument acronym, the subtype, the ears day, and the data version, as described above. For each data version, there is a cycle number that is greater than or equal to 1. Users need not know the cycle number as long as the variable ICYC_MAX is set to be larger than the actual cycle number of the file. A value of 10 for ICYC_MAX is usually large enough. Routine opn_l0_file will begin with cycle number 1 and will increment cycle numbers until a file is successfully opened or until ICYC_MAX is reached. The data version number and the cycle number are determined by production processing. The data version number corresponds to the software version that was used to generate the file, and the cycle number is incremented each time reprocessing was needed for the same file using the same software.

Usage:

 CALL OPN_L0_FILE(INSTR,IUARS_DAY,IVER_IN,

 & ICYC_MAX,ITYPE,IN_RECL,ICYC,LUN,FLNAME,IVAR,IDIRECT,IOS)

 ARGUMENT LIST DESCRIPTION

 ARGUMENT TYPE I/0 DESCRIPTION

 -------- ---- --- -------------------------------------

 INSTR CH*12 I INSTRUMENT ACRONYM. e.g.,

 claes, haloe, hrdi, isams, mls, pem,

 solstice, susima, susimb, windii,

 acrim,

 engineering, spacecraft, obc, quality

 IUARS_DAY I*4 I UARS DAY.

 IVER_IN I*4 I DATA VERSION.

 ICYC_MAX I*4 I MAXIMUM CYCLE NUMBER TO TRY.

 ITYPE I*4 I SET LAST 4 CHARACTERS OF INPUT FILE

 NAME. 1: PROD

 2: BNBE

 3: BNLE

 -2: BVBE

 -3: BVLE

IN_RECL I*4 I RECORD LENGTH (WORDS) OF

 FILE IF FIXED LENGTH.

 IF VALUE IS GT 0 FILE IS OPENED

 AS WITH RECL KEYWORD SET TO VALUE OF

 IN_RECL.

 ICYC I*4 I/O IF 0 ON INPUT, ROUTINE WILL

 TRY TO OPEN EXISTING FILE. CYCLES

 NUMBERS FROM 1 TO ICYC_MAX WIIL BE

 TRIED. IF EXISTING FILE IS FOUND,

 ICYC IS RETURNED. IF FILE NOT FOUND,

 ICYC IS SET BACK TO 0.

 LUN I*4 I/O LOGICAL UNIT NUMBER OF FILE.

 IF NOT ZERO ON INPUT, THE INPUT VALUE

 IS USED TO OPEN THE FILE.

 IF ZERO ON INPUT, LUN WILL

 BE SET TO 95 (INPUT) IF ICYC IS 0,

 AND TO 96 (OUTPUT) IF ICYC IS NOT 0.

 FLNAME CH*50 O FLNAME OF FILE.

 IVAR I*4 I IF O, OPEN FOR FIXED RECORD LENGTH

 IF -1, OPEN WITH KEYWORD RECORDTYPE

 SET TO 'SEGMENTED'

 IF -2, OPEN WITH KEYWORD RECORDTYPE

 SET TO 'VARIABLE'

 IDIRECT I*4 I INPUT 0:SEQUENTIAL ACCESS,1:DIRECT

 IOS I*4 O STATUS.

A.1.2 Level 0 Fortran File Name Routine (gen_l0_name)

Routine gen_l0_name (file gen_l0_name.for) generates the correct file name based on user-input values of the instrument and subtype acronyms, the UARS day number, and the file data version.

This routine is called only by opn_l0_file, and users only need to link this routine.

Usage:

 CALL GEN_L0_NAME(INSTR,IUARS_DAY,FNAME,IVER,ICYC,

 & ITYPE)

 ARGUMENT DESCRIPTION:

 ARGUMENT TYPE I/0 DESCRIPTION

 -------- ---- --- ---------------------------------------

 INSTR CH*12 I INSTRUMENT ACRONYM.

 IUARS_DAY I*4 I UARS DAY.

 IVER I*4 I DATA VERSION.

 ICYC I*4 I DATA VERSION.

 FNAME CH*50 O filename

A.1.3 Level 0 Sample Fortran Driver and Link Procedure

An example of a driver that uses fth_readl0 (file fth_readl0.for) to read all types of level 0 files is provided and given in file

 get_l0.for

The command/script file

 get_l0.com

can be used to link and generate an executable named

 get_l0.exe

For linking, in addition to the sample driver (file get_l0.for), the routines fth_readl0 (file fth_readl0.for), opn_l0_file (file opn_l0_file.for), gen_l0_name (file gen_l0_name.for), swap16 (file swap16.for), swap32 (file swap32.for), and swap64 (file swap64.for), (as noted earlier) are needed as well.

Upon running program get_l0.exe interactively, the following prompt appears on the screen:

ENTER FILE TYPE NUMBER

 1:CLAES,2:HALOE,3:HRDI,4:ISAMS,5:MLS,6:PEM

 7:SOLSTICE,8:SUSIMA,9:SUSIMB,10:WINDII,11:ACRIM

 12:ENGINEERING,13:SPACECRAFT,14:OBC,15:QUALITY

ENTER UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER'

(-1 FOR BOTH TO DO ALL DATA RECORDS)

DATA VERSION NUMBER,WRITE ASCI FILE[0/1]

SWAP BYTES[0/1]

An example of a user input to this prompt is

12 130 1 10 2 1

The different input variables are separated with blanks. As described in the prompt, the first input, '12', selects the ENGINEERING file to open and read. The 130 select the UARS day to read (there is one file for each day). Recall that UARS day number 1 is September 12, 1991, and January 1 1992 corresponds to UARS day 112. The '1 10' selects the first and last data records wanted (in this case the first 10 records). The next input, '2', is the file data version number. The next to last input, '1', means that an output file (in ASCII) of selected data will be written. The last input, also '1', is used for big endian computers, and a value of '0' is input for little endian systems.

With the above input, the program will read the first 10 data records of the level 0 data file named

 engineering_l0_d0130.v0002_c01_prod

and write a text file named

 engineering_l0_d0130.v0002_c01_asci

containing certain portions of data from the 10 selected records.

UARS file name conventions have been described in Section 1.1. Here, the output file name is the same as the input level 0 file except for the last 4 characters. In the above example, the user need not know the cycle number because the software first tries cycle number 1 and if needed, increments the cycle number until the file is found, or until a preset maximum is reached. This is the value of icyc_max and is currently set to 5. See the previous subsection on routine OPN_L0_FILE for more details.

A.2 Additional Level 0 C Software.

A.2.1 Level 0 C File Open Function Routine (opn_l0_file_c)

The C function routine opn_l0_file_c (file opn_l0_file_c.c) opens a UARS level 0 file with the proper attributes. It calls gen_l0_name_c (file gen_l0_name_c.c) to generate the file name based on user-input values such as the acronyms for instrument and parameter, the uars day number, and the data version number, which have been described above. The use of this function parallels that for the Fortran version, which is described in Section A.1.1.

Usage:

 void opn_l0_file_c(char *instr,int iuars_day,int iver_in,

 int icyc_max,int itype_rd,int in_recl,int *icyc,FILE **fp_rd,

 char *flname_rd,int *ios_rd);

 opn_l0_file_c(instr,iuars_day,iver_in,icyc_max,itype_rd,

 in_recl,&icyc,&fp_rd,flname_rd,&ios_rd);

 arguement type i/0 description

--

 instr ch*12 i instrument acronym.

 iuars_day i*4 i uars day. (e.g., sept 12, 1991 is

 uars day 1, jan 1 1992 is uars

 day 112; jan 1 1993 is uars day 478)

 iver_in i*4 i data version.

 icyc_max i*4 i maximum cycle number to try.

 itype i*4 i set last 4 characters of input file

 name.

 1: prod

 2: bnbe

 3: bnle

 4: asci

 in_recl i*4 i record length (bytes) of file if fixed

 length.

 icyc i*4 i/o nominally 0 on input.

 if 0 on input, routine will assume an

 existing file. cycles number will be

 incremented from 1 to icyc_max until

 success. if existing file is found,

 icyc is returned.

 ifp FILE** o pointer to file pointer

 flname ch*50 o flname of file.

 ios i*4 o status of open.

A.2.2 Level 0 C File Name Function Routine (gen_l0_name_c)

Function routine gen_l0_name_c (file gen_l0_name_c.c) generates the correct file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version. This routine is called only by

opn_l0_file_c.c, and users only need to link this routine.

A.2.3 Level 0 Sample C Driver and Link Procedure

An example of a driver that uses mcb_readl0_c to read all types of level 0 files is provided and given in file

 get_l0_c.c

The command/script file

 cclink_get_l0.com

can be used to compile, link, and generate an executable named

 get_l0_c.x

For linking, in addition to the sample driver (file get_l0_c.c), the functions mcb_readl0_c (file mcb_readl0_c.c), opn_l0_file_c (file opn_l0_file_c.c), gen_l0_name_c (file gen_l0_name_c.c), swap16_c (file swap16_c.c), swap32_c (file swap32_c.c), and swap64_c (file swap64_c.c) (noted earlier) are needed as well.

Upon running program get_l0_c.x interactively, the following prompt appears on the screen:

ENTER INSTRUMENT NUMBER

 1:CLAES,2:HALOE,3:HRDI,4:ISAMS,5:MLS,6:PEM

 7:SOLSTICE,8:SUSIMA,9:SUSIMB,10:WINDII,11:ACRIM

 12:ENGINEERING,13:SPACECRAFT,14:OBC,15:QUALITY

ENTER UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER

(-1 FOR BOTH TO DO ALL DATA RECORDS)

DATA VERSION NUMBER

WRITE ASCI FILE (0=NO,1=YES,2=to SCREEN)

SWAP BYTES (0=NO,1=YES)

An example of a user input to this prompt is

2 2370 1 3 2 1 1

The different input variables are separated with blanks. As described

in the prompt, the first input, '2', selects the HALOE file to

open and read. The '2370' selects the UARS day to read (there is one file for each day). Recall that UARS day number 1 is September 12, 1991, and January 1 1992 corresponds to UARS day 112. The '1 3' selects the first and last data records wanted (in this case the first 3 records). The next input, '2', is the file data version number. The next to last input, '1', means that an ASCII output file of selected data will be written. The last input, also '1', is used for big endian computers, and a value of '0' is input for little endian systems.

With the above input, the program will read the first 3 data records of

the level 0 data file named

 haloe_l0_d2370.v0002_c01_prod

and write a text file named

 haloe_l0_d2370.v0002_c01_asci

containing certain portions of data from the 3 selected records.

UARS file name conventions have been described in Section 1.1. Here,

the output file name is the same as the input level 0 file except for

the last 4 characters. In the above example, the user need not know the

cycle number because the software first tries cycle number 1 and if

needed, increments the cycle number until the file is found, or until a

preset maximum is reached. This is the value of icyc_max and is currently set to 5. See the previous subsection on routine opn_l0_file_c for more details.

A.3 Additional Level 1 Fortran Software.

A.3.1 Level 1 Fortran File Open Routine (opn_l1_file)

The Fortran routine opn_l1_file (file opn_l1_file.for) opens a UARS level 1 file with the proper attributes. It calls routine gen_l1_name (file gen_l1_name.for) to generate the needed file name based on user-input values such as acronyms for the instrument and parameter, the uars day, and the data version number. Details are the same as described above in Section A.1.1 for the opn_l0_file routine. An example of using this routine is given by the sample driver in file get_haloe_l1_final.for noted above.

Usage:

 CALL OPN_L1_FILE(INSTR,PARAM,IUARS_DAY,IVER_IN,

 & ICYC_MAX,ITYPE_IN,IN_RECL,ICYC,LUN,FLNAME,IVAR,

 & IDIRECT,IOS)

Argument list description:

 ARGUMENT TYPE I/0 DESCRIPTION

--

 INSTR CH*12 I INSTRUMENT ACRONYM.

 PARAM CH*12 I MEASURE PARAMETER.

 IUARS_DAY I*4 I UARS DAY. (E.G., SEPT 12,

 1991 IS UARS DAY 1, JAN 1

 1992 IS UARS DAY 112;

 JAN 1 1993 IS UARS DAY

 478)

 IVER_IN I*4 I DATA VERSION NUMBER.

 ICYC_MAX I*4 I MAXIMUM DATA CYCLE NUMBER

 TO TRY.

 ITYPE_IN I*4 I USED TO DETERMINE LAST 4

 CHARACTERS OF FILE NAME:

 0 OR 1: PROD

 2: BNBE

 3: BNLE

 4: ASCI

 ALSO USED FOR CONVERSION

 IF APPLICABLE.

 1: NOCONVERSION

 2: CONVERT = 'BIG ENDIAN'

 3: CONVERT = 'LITTLE

 ENDIAN'

 IN_RECL I*4 I RECORD LENGTH (WORDS) OF

 FILE IF FIXED LENGTH.

 IF VALUE IS GT 0 FILE IS

 OPENED WITH RECL KEYWORD

 SET TO VALUE OF IN_RECL.

 IF VALUE IS ZERO, FILE

 WILL BE OPENED WITHOUT

 RECL KEYWORD. AND

 DEFAULT IS USED. FOR

 VARIABLE RECORDS,

 VALUES FOR VMS ARE:

 SEGMENTED:2048(BYTES)

 OTHERS:133

 ICYC I*4 I/O SHOULD BE NOMINALLY SET

 TO 0.

 IF 0 ON INPUT, ROUTINE

 WILL TRY TO OPEN EXISTING

 FILE. CYCLES NUMBERS FROM

 1 TO ICYC_MAX WIIL BE

 TRIED. IF EXISTING FILE IS

 FOUND,ICYC IS RETURNED. IF

 FILE NOT FOUND,

 ICYC IS INCREMENTED BY 1

 UP TO ICYC_MAX.

 IF NOT ZERO ON INPUT, FILE

 IS ASSUMED NOT TO EXIST

 AND A NEW FILE IS OPENED

 USING THE VALUE IF ICYC.

 LUN I*4 I/O LOGICAL UNIT NUMBER OF

 FILE.

 IF NOT ZERO ON INPUT, THE

 INPUT VALUE

 IS USED TO OPEN THE FILE.

 IF ZERO ON INPUT, LUN WILL

 BE SET TO 95 (INPUT) IF

 ICYC IS 0.

 AND TO 96 (OUTPUT) IF ICYC

 IS NOT 0.

 FLNAME CH*50 O FLNAME OF FILE.

 IVAR I*4 I IF O, OPEN FOR FIXED

 RECORD LENGTH,

 AND IS THE CASE FOR CLAES.

 IF -1, OPEN WITH KEYWORD

 RECORDTYPE SET TO

 'SEGMENTED'(VMS ONLY)

 IF -2, OPEN WITH KEYWORD

 RECORDTYPE SET TO

 'VARIABLE'

 IDIRECT I*4 I INPUT 0:SEQUENTIAL

 ACCESS,1:DIRECT.

 DIRECT IS APPLICABLE TO

 CLAES

 IOS I*4 O STATUS AFTER ATTEMPT TO

 OPEN.

A.3.2 Level 1 Fortran File Name Routine (gen_l1_name)

Routine gen_l1_name (file gen_l1_name.for) generates the correct file name based on user-input values of the instrument and subtype acronyms, the UARS day number, and the file data version number.

This routine is called only by opn_l1_file, and users only need to link this routine.

A.3.3 Level 1 Sample Fortran Driver and Link Procedure

An example of a driver which calls the access routines is provided and given in file

 get_haloe_l1_final.for.

The file

 get_haloe_l1_final.com

can be used to link and generate an executable named

 get_haloe_l1_final.exe

Upon running program get_haloe_l1_final.exe interactively, the following

prompt appears on the screen:

ENTER INSTR,PARAM(BOTH LWR CASE, IN SNGL QUOTES)

BEGIN UARS DAY,END UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER

(-1 FOR EACH TO DO ALL DATA RECORDS (EVENTS))

DATA VERSION

FILE TYPE (0:.PROD,-1:PROV,-2:BIG ENDIAN,-3:LITTLE)

WRITE SELECTED DATA TO PLOT?[0:NO,1:YES]

An example of a user input to this prompt is

'haloe' 'final' 125 125 1 3 18 -2 1

The different input variables are separated with blanks. The first string is the HALOE instrument acronym, and the second is the subtype acronym. The '125 125' selects the begin and end UARS days to read (there is one file for each day). Here, only the file for UARS day 125 is processed. UARS day number 1 is September 12, 1991, and January 1 1992 corresponds to UARS day 112. The '1 3' selects the first and last data events wanted (in this case the first 3 events). The '18' is the file data version number, and the '-2' is used for the file name generation (the value 2 denotes big endian, while the negative sign denotes variable length records). The last input, namely, '1' chooses the option to write the selected records to a text file. A '0' does not produce a file.

With the above input, the program will read the first 3 header and data records of the level 1 data file named

 haloe_l1_sfinal_d0125.v0018_c01_bvbe

and write a text file named

 haloe_l1_sfinal_d0125.v0018_c01_asci

containing certain portions of data from the 3 selected records.

A.4 Additional Level 1 C Software.

A.4.1 Level 1 C File Open Function

A.4.1 Level 1 C File Open Function (opn_l1_file_c)

The C function routine opn_l1_file_c (file opn_l1_file_c.c) opens a UARS level 1 file with the proper attributes. It calls routine gen_l1_name_c (file gen_l1_name_c.c) to generate the filename based on input values such as acronyms for the instrument (i.e., claes), parameter (i.e., claes), uars day, and the data version number, which have been described previously. Details are the same as described above in Section A.1.1 for the opn_l0_file routine.

Usage:

 opn_l1_file_c(char* instr,char* param,int iuars_day,

 int iver_in,int icyc_max,int itype_in,

 int in_recl,int* icyc,FILE** ifp,

 char* flname,int* ios)

Argument list description:

argument type i/0 description

-------- ---- --- -------------------------------

instr char[12] i instrument acronym.

param char[12] i measure parameter.

iuars_day int i uars day. (e.g., sept 12, 1991

 is uars day 1, jan 1 1992 is

 uars day 112; jan 1 1993 is

 uars day 478)

iver_in int i data version.

icyc_max int i maximum cycle number to try.

itype int i set last 4 characters of input

 file name.

 1: prod

 2: bnbe

 3: bnle

 4: asci

in_recl int i record length (bytes) of file

 if fixed length.

icyc int i/o nominally 0 on input.

 if 0 on input, routine will

 assume an existing file. Cycles

 number will be incremented from

 1 to icyc_max until

 success. if existing file is

 found,icyc is returned.

ifp FILE** o pointer to file pointer

flname char[50] o flname of file.

ios int o status of open.

A.4.2 Level 1 C File Name Function (gen_l1_name_c)

The function routine in file gen_l1_name_c.c generates the file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version. This routine is called only by opn_l1_file_c.c, and users only need to link this routine.

A.4.3 Level 1 Sample C Driver and Link Procedure

A sample driver to use the above functions is provided. The file name containing the driver is

 get_haloe_l1_final_c.c

and the compile and link file name is

 get_haloe_l1_final_c.com

Upon executing this file, an executable is created in file

 get_haloe_l1_final_c.exe

Use of this C program is similar to that for the corresponding Fortran program described earlier. Details are repeated here for convenience.

Upon running program

 get_haloe_l1_final_c.exe

interactively, the following prompt appears on the screen:

enter instr,param(lwr case,no quotes)

begin uars day,end uars day

enter first data record number, last data record number

(-1 for each to read all data records)

data version

in file type (0:prod,-1:prov,-2:big endian,-3:little end)

write output to plot (0:no,1:yes)

An example of a user input to this prompt is

haloe data 125 125 1 3 18 -2 1

The different input variables are separated with blanks. The first string is the HALOE instrument acronym, the second is the subtype acronym. The '125 125' select the begin and end UARS days (there is one file for each day) to read. UARS day number 1 is September 12, 1991; January 1 1992 corresponds to UARS day 112. The input '1 3' selects the first and last data records wanted (in this case the first 3 records). The '18' gives the file data version number, the '-2' is used for the file name generation (2 denotes big endian, and the negative value denotes a variable length file). The last input, namely '1' chooses the option to write the portions of the selected records to a text file for analysis. A '0' does not produce a file.

With the above input, the program will read the first 3 header and the first 3 data records of the level 1 data file named

 haloe_l1_sfinal_d0125.v0018_c01_bvbe

and write a text file named

 haloe_l1_sfinal_d0125.v0018_c01_asci

containing certain portions of data from the 3 selected records.

PAGE
1

