DRAFT / SSAI

November 1, 2002

DRAFT

This is a work-in-progress document describing the access of level 0, level 1, and level 2 data from the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument, which is part of a complement of instruments on the Upper Atmosphere Research Satellite (UARS). CLAES primarily measures atmospheric temperature and important minor constituents in the earth’s stratosphere. Originally, the data were generated for computer systems compatible with the Compaq (Digital Equipment Corporation) VAX/Alpha computers running under the VMS operating system. The following describes those data that are converted to be compatible with Silicon Graphics Incorporated (SGI) computer systems running under IRIX. The converted data are therefore also compatible with the facilities of the GSFC Distributed Active Archive Center (DAAC). The following also describes software for the access of the converted data files.

SSAI

1.0 Introduction.
4
1.1 Data Products and File Names.
4
1.1.1 Level 0 Data Products and File Names
4
1.1.2 Level 1 Data Products and File Names
5
1.1.3 Level 2 Data Products and File Names
5
1.2 Software Products and File Names
5
1.2.1. Level 0 Software
6
1.2.2. Level 1 Software
6
1.2.3 Level 2 Software
7
1.3 Additional Software
7
1.3.1 Additional level 0 Software
8
1.3.2 Additional level 1 Software
8
1.3.3 Additional level 2 Software
9
2.0 Related Documentation
10
3.0 CLAES Files and Data Structures
10
3.1 CLAES Level 0 File and Data Structure
10
3.2 CLAES Level 1 File and Data Structure
11
3.3 CLAES Level 2 Files and Data Structures
11
4.0 Access Software
12
4.1 General Considerations.
12
4.1.1 Arrays
12
4.1.2 Fill Data.
12
4.2 Level 0 Fortran Software
13
4.2.1 Fortran Access Routine to Read Level 0 Data (fth_readl0)
13
4.3 Level 0 C Software
14
4.3.1 C Function Routine to Read Level 0 Data (mcb_readl0_c)
14
4.4 Level 1 Fortran Software
15
4.4.1 Fortran Access Routine to Read Level 1 Data (fth_read_claes_l1_ns)
15
4.5 Level 1 C Software
17
4.5.1 C Code to Read Level 1 Data (fth_read_claes_l1_ns_c).
17
4.5.2 Level 1 C Array Transform Routines
20
4.6 Level 2 Fortran Software
20
4.6.1 Fortran Routine to Read Level 2 Data (claes_l2_rd)
21
4.7 Level 2 C Software
22
4.7.1C Code to Read Level 2 data (claes_l2_rd_c)
22
4.7.2 Level 2 C Array Transform Functions
23
Appendix: Additional Software
24
A.1 Additional Level 0 Fortran Software.
24
A.1.1 Level 0 Fortran File Open Routine (opn_l0_file)
24
A.1.2 Level 0 Fortran File Name Routine (gen_l0_name)
25
A.1.3 Level 0 Sample Fortran Driver and Link Procedure
26
A.2 Additional Level 0 C Software.
27
A.2.1 Level 0 C File Open Function Routine (opn_l0_file_c)
27
A.2.2 Level 0 C File Name Function Routine (gen_l0_name_c)
28
A.2.3 Level 0 Sample C Driver and Link Procedure
28
A.3 Additional Level 1 Fortran Software.
29
A.3.1 Level 1 Fortran File Open Routine (opn_l1_file)
30
A.3.2 Level 1 Fortran File Name Routine (gen_l1_name)
31
A.3.3 Level 1 Sample Fortran Driver and Link Procedure
32
A.4 Additional Level 1 C Software.
33
A.4.1 Level 1 C File Open Function (opn_l1_file_c)
33
A.4.2 Level 1 C File Name Function (gen_l1_name_c)
34
A.4.3 Level 1 Sample C Driver and Link Procedure
34
A.5 Additional Level 2 Fortran Software
35
A.5.1 Level 2 Fortran File Open Routine(opn_l2_file)
35
A.5.2 Level 2 Fortran File Name Routine (gen_l2_name)
37
A.5.3 Level 2 Sample Fortran Driver and Link Procedure.
37
A.6 Additional Level 2 C Software
38
A.6.1 Level 2 C File Open Code (opn_l2_file_c)
38
A.6.2 Level 2 C File Name Function (gen_l2_name_c)
39
A.6.3 Level 2 Sample C Driver and Link Procedure
39

1.0 Introduction

The following describes software and issues related to the access of data from the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument, which is part of a complement of instruments on the Upper Atmosphere Research Satellite (UARS). CLAES primarily measures temperature and a variety of important minor constituents, mainly in the earth’s stratosphere. Currently, this document applies to CLAES level 0, level 1, and level 2 data files that have been converted to be compatible with Silicon Graphics computers running under IRIX. The converted files are also compatible with the facilities of the NASA GSFC Distributed Active Archive Center (DAAC). The original files were created by UARS production processing running under the Compaq (Digital Equipment Corporation (DEC)) VMS operating system, on the UARS Central Data Handling Facility (CDHF). Corresponding activities for the UARS instrument calibration data will be included at a later date. The conversion of UARS level 3 data is not part of this activity.

The software that does the actual conversion of the original files is also not part of this description. The following describes the converted files and the software that are provided to access the converted files. Routines to read the converted file are provided in both Fortran and C. The original data were produced using Fortran code.

1.1 Data Products and File Names

Data products consist of the various levels of CLAES data. Basically, the level 0 data are the telemetry data that have been sorted and stored. Level 1 data include calibrated data in engineering units, such as radiances, while level 2 data are the products used for scientific analysis, such as mixing ratios of constituents and temperature. The data files within a data level may be further divided into subtypes, such as the specific parameter(s) measured. File names are based on the data level, on the data type (subtype), and on the day of year, among other things. Examples of measured parameters are temperature (level 2) and radiances (level 1).

1.1.1 Level 0 Data Products and File Names

There are 15 types of UARS level 0 files, nominally one for each day. Of these, 5 files are pertinent to CLAES. Examples are

 claes_l0_d2370.v0002_c01_prod

 engineering_l0_d1101.v0002_c01_prod

 spacecraft_l0_d2373.v0002_c01_prod

 obc_l0_d1673.v0002_c01_prod

 quality_l0_d1644.v0002_c01_prod

The UARS level 0 file name convention begins with the type acronym (e.g., claes, engineering,...), followed by the level(i.e., l0). Next is the UARS day number (e.g.,2370; September 12, 1991 corresponds to UARS day number 1, January 19 1992 is UARS day 130). This is followed by the data version number (0002), and then by the cycle number (01). The data version number corresponds to the software that produced the data. For each data version, there is a cycle number that is nominally 1. If reprocessing is needed for the same version, the cycle is incremented. The most recent data correspond to the highest version and cycle numbers. The last four characters of the file name are always 'prod'.

In the above, file claes_l0_d2370.v0002_c01_prod is the CLAES level 0 data for UARS day 2370, data version 0002, cycle 01, while the other 4 types of files contain complementary flight data.

1.1.2 Level 1 Data Products and File Names

There is one type of level 1 file (subtype CLAES) which is converted. Typically, files are produced each day. An example of a converted level 1 CLAES file is

 claes_l1_sclaes_d0130.v0008_c01_bnbe

The UARS level 1 file name convention begins with the instrument acronym (CLAES), followed by the level (L1), which in turn is followed by the subtype (CLAES). Next is the UARS day number(0130; e.g., September 12, 1991 corresponds to UARS day number 1, January 19 1992 is UARS day 130) and the data version number(0008), followed by the cycle number(01). The data version number is set by the instrument principal investigator, and corresponds to the software that produces the data. The data cycle number is determined by the UARS production processing. For each data version, there is a cycle number that is nominally 1. If reprocessing is needed for the same version, the cycle is incremented.

The last four characters of the file name were 'PROD' as originally generated on the UARS CDHF, but have been replaced here by 'BNBE' to denote that the file has been converted.

1.1.3 Level 2 Data Products and File Names

There is also one type of level 2 data that is converted. An example file is

 claes_l2_sclaes_d0130.v0008_c01_bnbe

Except for the level number, the file name convention is the same as that for the level 1 files described above.

1.2 Software Products and File Names

The software products are divided into required software and additional products. The required software consists of access functions/routines in both Fortran and C that can be used to read the files. Additional software are those which are provided as a convenience for the user and is not formally part of this software package. Examples of additional software are sample drivers that use the required software, and routines that generate the proper file names and open the files. Additional software is described in the Appendix.

Because some of the software is made to run under both IRIX and under VMS, for the sake of consistency, the following file name conventions are used for the software. File names for Fortran code end in '.for', and files written in C will end in '.c'. Link scripts and executable names end in '.com' and '.exe', respectively.

The names of the software modules are listed next. The software is given in terms of subroutine/function names or file names. The subroutine/function names and file names are used interchangeably, but the latter also contain extensions such as '.for', as noted above.

1.2.1. Level 0 Software

The following routine/function can be used to read each of the 5 level 0 files listed above. File names are given in parenthesis.

Routine name Description

(file name)

------------ -----------

fth_readl0 Fortran routine to read level 0 files of

(fth_readl0.for) all types

mcb_readl0_c C code to read level 0 files of all types

(mcb_readlo_c.c)

1.2.2. Level 1 Software

Software is provided to read header and data records for each of the level 1 files listed above.

Routine name Description

(file name)

------------ -----------

fth_read_claes_l1_ns Fortran routine to read both the header

(fth_read_claes_l1_ns.for) and data records of the CLAES level 1

 file of subtype CLAES

fth_read_claes_l1_ns_c C code to read the header and data

(fth_read_claes_l1_ns_c.c) records of the CLAES level 1 file of

 subtype CLAES

For C, functions are also provided to transform the multidimensional arrays so that the indices are consistent with those of the Fortran arrays (which conform to the documentation). Because they are used only by routines provided here, users need only link the following functions, and need not know how to invoke them. The array transform routines are as follows:

 for_c_mtrx_2 (file for_c_mtrx_2.c)

 for_c_mtrx_3 (file for_c_mtrx_3.c)

 int_for_c_mtrx_2 (file int_for_c_mtrx_2.c)

 int_for_c_mtrx_3 (file int_for_c_mtrx_3.c)

 ch_for_c_mtrx_2 (file ch_for_c_mtrx_2.c)

 ch_for_c_mtrx_3 (file ch_for_c_mtrx_3.c)

 test_nan_c (file test_nan_c.c)

The names in parenthesis are the corresponding file names.

1.2.3 Level 2 Software

Software is provided to read header and data records for each of the level 2 files listed above.

Routine name Description

(file name)

------------ -----------

claes_l2_rd Fortran routine to read the header and

(claes_l2_rd.for) data records of the CLAES level 2 file of

 subtype CLAES

claes_l2_rd_c C code to read the header and data

(claes_l2_rd_c.c) records of the CLAES level 2 file of

 subtype CLAES

As for the case of the level 1 software, functions are provided to transform the multidimensional array such that the indices are consistent with those of the Fortran arrays (which conform to the documentation). Because they are used only by routines provided here, users need only know to link the following functions, and need not know how to invoke them. The array transform routines are as follows:

 for_c_mtrx_2 (file for_c_mtrx_2.c)

 for_c_mtrx_3 (file for_c_mtrx_3.c)

 int_for_c_mtrx_2 (file int_for_c_mtrx_2.c)

 int_for_c_mtrx_3 (file int_for_c_mtrx_3.c)

 ch_for_c_mtrx_2 (file ch_for_c_mtrx_2.c)

 ch_for_c_mtrx_3 (file ch_for_c_mtrx_3.c)

 test_nan_c (file test_nan_c.c)

1.3 Additional Software

As noted earlier, additional software are provided as a convenience to users, but is not formally part of the software package per se. Used together with the access routines, they can be linked into executables to read and list the data. Here, they are listed for completeness. Details are given in the Appendix. File names are given in parenthesis.

1.3.1 Additional level 0 Software
Routine Name Description

(file name)

----------- -----------

get_l0 Fortran sample driver for using level 0

(get_l0.for) routines

opn_l0_file Fortran code to open level 0 files

(opn_l0_file.for)

gen_l0_name Fortran code to generate level 0 file names

(gen_l0_name.for)

get_l0_c C sample driver for using level 0

(get_l0_c.c) function routines

opn_l0_file_c C code to open level 0 files

(opn_l0_file_c.c)

gen_l0_name_c C code to generate level 0 file names

(gen_l0_name_c.c)

1.3.2 Additional level 1 Software

Routine Name Description

(file name)

----------- -----------

get_claes_l1_claes_ns Fortran sample driver for level 1 software

(get_claes_l1_claes_ns.for)

opn_l1_file Fortran code to open a level 1 file

(opn_l1_file.for)

gen_l1_name Fortran code to generate level 1 file names

(gen_l1_name.for) based on subtype, day, version number

get_claes_l1_claes_ns_c C sample driver for using level 1 software

(get_claes_l1_claes_ns_c.c)

opn_l1_file_c C code to open level 1 files

(opn_l1_file_c.c)

gen_l1_name_c C code to generate level 1 file names

(gen_l1_name_c.c) based on day number, subtype, version.

As noted above, for C, routines are also provided to transform the multidimensional arrays so that the indices are consistent with those of the Fortran arrays (which conform to the documentation). Because they are used only by routines provided here, users need only link the following functions, and need not know how to invoke them. The array transform routines are as follows:

 for_c_mtrx_2 (file for_c_mtrx_2.c)

 for_c_mtrx_3 (file for_c_mtrx_3.c)

 int_for_c_mtrx_2 (file int_for_c_mtrx_2.c)

 int_for_c_mtrx_3 (file int_for_c_mtrx_3.c)

 ch_for_c_mtrx_2 (file ch_for_c_mtrx_2.c)

 ch_for_c_mtrx_3 (file ch_for_c_mtrx_3.c)

 test_nan_c (file test_nan_c.c)

The names in parenthesis are the corresponding file names.

1.3.3 Additional level 2 Software

Routine Name Description

(file name)

----------- -----------

get_claes_l2_main Fortran sample driver for level 2 software

(get_claes_l2_main.for)

opn_l2_file Fortran code to open level 2 files

(opn_l2_file.for)

gen_l2_name Fortran code to generate level 2 file names

(gen_l2_name.for) based on day number, subtype, version

get_claes_l2_main_c C sample driver for level 2 software

(get_claes_l2_main_c.c)

opn_l2_file_c C code to open level 2 files

(opn_l2_file_c.c)

gen_l2_name_c C code to generate level 2 file names

gen_l2_name_c.c) based on day number, subtype, version

As noted earlier, C routines are provided to transform the multidimensional array such that the indices are consistent with those of the Fortran arrays (which conform to the documentation). Because they are used only by routines provided here, users need only know to link the following functions, and need not know how to invoke them. The array transform routines are as follows:

 for_c_mtrx_2 (file for_c_mtrx_2.c)

 for_c_mtrx_3 (file for_c_mtrx_3.c)

 int_for_c_mtrx_2 (file int_for_c_mtrx_2.c)

 int_for_c_mtrx_3 (file int_for_c_mtrx_3.c)

 ch_for_c_mtrx_2 (file ch_for_c_mtrx_2.c)

 ch_for_c_mtrx_3 (file ch_for_c_mtrx_3.c)

 test_nan_c (file test_nan_c.c)

The names in parenthesis are the corresponding file names.

2.0 Related Documentation
A general description of the scientific goals and the CLAES instrument is found in the following paper:

Roche, A.E., J. B. Kumer, J. L. Mergenthaler, G. A. Ely, W. G. Uplinger, J. F. Potter, T. C. James, and L. W. Sterritt, The Cryongenic Limb Array Etalon Spectrometer on UARS:Experiment Description and Performance, J. Geophys. Res., 98,10,763-10,775, June 20, 1993.

Other related CLAES documents include

a) CLAES Ground Data Processing Software User's Guide VERSION 4.14

This document is contained in file CLAES_USER_GUIDE_JUN93.DOC

b) UPPER ATMOSPHERE RESEARCH SATELLITE CRYOGENIC LIMB ARRAY ETALON SPECTROMETER STANDARD FORMAT DATA UNITS CLAES LEVEL 2 TIME-ORDERED ATMOSPHERIC DATA PROFILES February 1994

This document is contained in file NURSCL03.DOC.

c) UARS CDHF SOFTWARE SYSTEM (UCSS) PROGRAMMER'S GUIDE TO PRODUCTION SOFTWARE SUPPORT SERVICES, COMPUTER SCIENCES CORPORATION,OCTOBER,1995.

This document describes access routines for UARS data levels 0 and 3, but not for levels 1 and 2. The contents can be found in file

 ucss_pg_oct95.mem

Currently, there is no documentation available for the CLAES level 1 data per se.

3.0 CLAES Files and Data Structures

3.1 CLAES Level 0 File and Data Structure

Unlike the converted level 1 and level 2 files, the level 0 files are unchanged from the original VMS versions. The contents of level 0 files are mostly byte-oriented, and the relatively few data words that need to be converted are done so by the read routine that is provided and described below. Consequently, users should only use the included software for this purpose.

All Level 0 files contain fixed length records, and data access is direct. The record lengths for relevant file types are as follows

 TYPE RECORD LENGTH (BYTES)

 ---- ---------------------

 claes 24640

 engineering 8256

 spacecraft 21568

 obc 14400

 quality 2532

For more details, refer to the document

 UARS CDHF SOFTWARE SYSTEM (UCSS) PROGRAMMER'S GUIDE TO PRODUCTION

 SOFTWARE SUPPORT SERVICES, COMPUTER SCIENCES CORPORATION,OCTOBER,1995.

The contents can be found in file ucss_pg_oct95.mem

3.2 CLAES Level 1 File and Data Structure

As noted earlier, an example of a converted level 1 CLAES file is the file

 claes_l1_sclaes_d0130.v0008_c01_bnbe

This file of subtype CLAES is the primary Level 1 product. It is made up of a header record, followed by data records. The files consist of fixed length records written in binary. All files have the same record length, namely, 3020 four-byte words. Data in the converted files appear in the same order and the same records as in the original VMS files, and direct access in reading the records is used.

Examples of other types of catalogued level 1 CLAES files are

 claes_l1_sinterpo_day_d0160.v0008_c01_prod

 claes_l1_sp2_info_d0160.v0008_c01_prod

 claes_l1_ssat_max_day_d0160.v0007_c06_prod

 claes_l1_szero_assoc_d0160.v0008_c01_prod

Files of subtypes interpo_day, sat_max_day, zero_assoc, and zero_level are all formatted files. At present, these types are not needed for archival purposes.

Currently, there is no available documentation on the level 1 data per se.

3.3 CLAES Level 2 Files and Data Structures

An example of a converted level 2 file is

 claes_l2_sclaes_d0130.v0008_c01_bnbe

This is the converted level 2 file and the records are fixed length of 2540 words (10160 bytes).

Documentation for level 2 data is contained in file nurscl03.doc

There is one other type of level 2 file. An example is

 claes_l2_sl2p1_d0160.v0008_c01_prod

It does not appear that files of this type need to be archived.

4.0 Access Software

Software for accessing the data is provided in the form of Fortran routines and C functions. For consistency, because software is provided in both Fortran and C, and because some of the software are made to run under both IRIX and under VMS, the following name conventions are used for the software: a) file names for Fortran code end in '.for', and files written in C end in '.c'; b) link scripts and executable file names end in '.com' and '.exe', respectively.

4.1 General Considerations.

Nominally, CLAES production processing generates files on a daily basis for each level. The CLAES level 1 and level 2 data files were originally written in binary with fixed record lengths, and the converted files contain the same records and structures. Record data access is direct.

Because the structure of the records has been preserved, the original CLAES documentation remains applicable, but with the following issues in this section borne in mind.

4.1.1 Arrays

The indices of arrays that are read by Fortran routines begin with the same values as in the original VMS routines. Arrays that are read by C programs begin with index 0.

For multidimensional arrays, C and Fortran are different as to which index varies fastest (row major, row minor). The C access routines which are provided accounts for this, so that the various indices of the arrays have the same meaning for both C and Fortran routines, and conform to the original documentation.

4.1.2 Fill Data.

There are cases where the records in the original VMS files contain erroneous status words (written by CLAES) and contain other values that appear to be non-physical. In these cases, conversion can be problematical. For these records, the output have been set to zero, except for the first two words which contain the original requested record number and the record number as written in the file.

4.2 Level 0 Fortran Software

4.2.1 Fortran Access Routine to Read Level 0 Data (fth_readl0)

Because the level 0 data files are unchanged from the original VMS versions, users should use only fth_readl0 (file fth_readl0.for), or its C equivalent, for reading the level 0 data on systems which conform to the big endian addressing convention (e.g., SGI, SUN). The level 0 data files are essentially byte-oriented, and only the first 64 bytes of the data records (the data record header) need be converted. It was judged that this conversion should be done by the read routine. Record access is direct, and record 1 is the file label record (all ASCII) followed by data records. The first 64 bytes of each data record (the data record header) are mostly information in integer words, and is converted by the read software. The rest of each data record is byte-oriented.

Usage:

 CALL FTH_READL0(LUN_RD,IREC,IREC_LEN,L0_BUFF,

 & ISWAP,IOS_RD)

 ARGUMENT DESCRIPTION

 ARGUMENT TYPE I/O DESCRIPTION

 -------- ---- --- -----------------------------

 LUN_RD I*4 I LOGICAL UNIT OF INPUT FILE

 IREC I*4 I RECORD TO READ (1 OR GREATER)

 IREC_LEN I*4 I RECORD LENGTH IN BYTES

 claes 24640

 haloe 16448

 hrdi 19520

 isams 8256

 mls 10304

 pem 28736

 solstice 2532

 susima 8256

 susimb 8256

 windii 16448

 acrim 4160

 engineering 8256

 spacecraft 21568

 obc 14400

 quality 2532

 L0_BUFF CHAR*1 O BUFFER CONTAINING LEVEL 0 DATA

 (IREC_LEN)

 ISWAP I*4 I 0:FOR LITTLE ENDIAN COMPUTERS

 1:FOR BIG ENDIAN COMPUTERS

 IOS_RD I*4 O READ STATUS 0:NO ERROR

This routine calls 3 other routines that are used to convert from little endian to big endian standards, namely,

 swap32 (swap32.for)

 swap16 (swap16.for)

 swap64 (swap64.for)

The file names are in parenthesis). Users need not know how to call these routines explicitly as they are used only by fth_readl0.

4.3 Level 0 C Software

4.3.1 C Function Routine to Read Level 0 Data (mcb_readl0_c)
Because the level 0 data files are unchanged from the original VMS versions, users should use only mcb_readl0_c (file mcb_readl0_c.c), or its Fortran equivalent, for reading the level 0 data on systems which conform to the big endian addressing convention (e.g., SGI, SUN).

Usage:

void mcb_readl0_c(FILE *fp_rd,int irec,int in_recl_byte,

 signed char *l0_buff,int iswap,int *ios_rd);

 mcb_readl0_c(fp_rd,irec,in_recl_byte,&l0_buff[0],iswap,&ios_rd);

 THIS ROUTINE READS THE UARS LEVEL 0 DATA. IT ASSUMES

 THAT THE DATA FILE CORRESPONDS TO THE ORIGINAL, VMS

 DATA FILES. IN ORDER TO INTERPRET CORRECTLY, FOR

 BIG ENDIAN COMPUTERS, ISWAP SHOULD BE SET TO 1.

 ARGUMENT DESCRIPTION

 ARGUMENT TYPE I/O DESCRIPTION

 -------- ---- --- -----------------------------

 fp_rd FILE* I pointer to input file-buffer-string

 irec I*4 I RECORD NUMBER TO READ (1 OR GREATER)

 irec_len I*4 I RECORD LENGTH IN BYTES

 l0_buff CHAR*1 O BUFFER CONTAINING LEVEL 0 DATA

 iswap I*4 I 0:FOR LITTLE ENDIAN COMPUTERS

 1:FOR BIG ENDIAN COMPUTERS

 ios_rd I*4 O READ STATUS 0:NO ERROR

This routine calls 3 other routines that are used to convert from

little endian to big endian standards, namely,

 swap32_c (swap32_c.c)

 swap16_c (swap16_c.c)

 swap64_c (swap64_c.c)

Users need not know how to invoke these routines explicitly as they are used only by mcb_readl0_c.

4.4 Level 1 Fortran Software

The software consists of one routine which users can call to read the level 1 header and data records. Additional software in the form of a sample driver, a file name generation routine, and a file open routine is provided. A procedure is also provided to link the driver and routines. The resulting executable can be used to read the data and write selected portions to an output file for analysis. More details appear in the Appendix.
In the following, some of the descriptions for the arguments are not defined because no documentation was provided by CLAES. Where available, descriptions were culled from in-line comments.

4.4.1 Fortran Access Routine to Read Level 1 Data (fth_read_claes_l1_ns)

Routine fth_read_claes_l1_ns (file fth_read_claes_l1_ns.for) reads both the header and data records of the CLAES level 1 data (subtype CLAES). Aside from opening the data file, it is the only routine necessary.

Usage:

 CALL FTH_READ_CLAES_L1_NS(LUN_RD,IHDR,

 & MINUTES,MINUTES_TOT,MINUTRD1,MINUTESV2 ,

 & MINUTE_PM_DRIVER,UARS_DAY,

 & RET_DATTIM,REQ_DATTIM,VER_OFFSETS,HCLRADIANCES,

 & SMCRADIANCES,LATLON,MINUTE_ATM,COMMAND_MODE,

 & OBCSFTWARE_VRS,FRAMECOUNT,

 & TPRAD16,SOLAR_ZEN16,PLACEHOLD,ITR,TIME,ATT_TYP_VER,

 & ORB_TYP_VER,ALAMM,SAT_POS,SAT_VEL,

 & YPR,YPR_RATE,DEPR,TPLAT,TPLON,TPALT,TPLAZ,

 & GMT,SOLAR_ZEN,SLAT,SLON,

 & TPRAD,ATT_RETRN,ORB_RETRN,

 & VRA,VDEC,N_TRG,OBC_COM,

 & STATUS,IFILL1,

 & NTMX_P,IBLKMX_P,NRET_P,IETLMX_P,IOS_RD)

Argument description.

ARGUMENT TYPE I/O DESCRIPTION

-------- ---- --- -----------------------

LUN_RD I*4 I LOGICAL UNIT INPUT FILE

IHDR I*4 I 0:READ DATA RECORD

 1:READ HEADER RECORD

 (RECORD 1)

MINUTES I*4 I MINUTES+1 IS RECORD NUMBER

 TO BE READ

MINUTES_TOT I*4 O NUMBER OF DATA RECORDS IN

 FILE

 OBTAINED FROM HEADER

 RECORD

MINUTRD1 I*4 O SHOULD BE EQUALT TO INPUT

 MINUTES DENOTING CORRECT

 RECORD WAS READ.

MINUTESV2 I*4 O ?

 (1719)

MINUTE_PM_DRIVER I*1 O ?

UARS_DAY I*4 O UARS DAY

RET_DATTIM I*4(2) O RETURNED YRDAY AND MSEC(?)

REQ_DATTIM I*4(2) O REQUESTED YRDAY AND MSEC(?)

VER_OFFSETS R*4(9) O These track vertical motion of

 the focal plane relative to

 nominal, these are obtained

 from algorithms

 applied to O/A and LAAM data.

HCLRADIANCES R*4 O obvious

 (3,9)

SMCRADIANCES R*4 O Radiances interpolated to

 (20,9,9) one grid.

LATLON R*4 O The latitude and longitude

 (2,9) of the tangent point for the

 10th detector for data taken

 for each EMAF and for each

 blocker position. This data

 required for global mapping

 routines to be installed later

MINUTE_ATM I*4 O ?

COMMAND_MODE I*4 O computer command_mode

OBCSFTWARE_VRS I*4 O This is stuff that Paul Bailey

FRAMECOUNT I*4 O wanted in the L1 data such as

 mode #,version #, etc.to

 output CLAES onboard

 computer command_mode

TPRAD16 R*4 O TPRAD(16)

SOLAR_ZEN16 R*4 O SOALR_ZEN(16)

PLACEHOLD R*4(10) O ?

ITR I*4 O ?

TIME I*4 O ?

 (2,32)

ATT_TYP_VER CHAR*12 O ATTITUDE TYPE

 (32)

ORB_TYP_VER CHAR*4 O ORBIT TYPE

 (32)

ALAMM R*4 O

 (32)

SAT_POS R*4 O SATELLITE POSITION

 (3,32)

SAT_VEL R*4 O SATEL;ITE VELOCITY

 (3,32)

YPR R*4 O YAW PITCH ROLL

 (3,32)

YPR_RATE R*4 O YAW PITCH ROLL RATE

 (3,32)

DEPR R*4(32) O ?

TPLAT R*4(32) O TANGENT POINT LATITUDE(?)

TPLON R*4(32) O TANGENT POINT LONGITUDE(?)

TPALT R*4(32) O The O/A quantity TPALT will

 be used in the sense of an

 offset that varies in time

 within the EMAF to facilitate

 the procedure. The values for

 TPALT will refer to a point on

 the CLAES array that lies

 directly between the 10th and

 11th detector.

TPLAZ R*4(32) O ?

GMT R*4(32) O ?

SOLAR_ZEN R*4(32) O SOLAR ZENITH ANGLE(?)

SLAT R*4(32) O SATELLITE LATITUDE(?)

SLON R*4(32) O SATELLITE LONGITUDE(?)

TPRAD R*4(32) O ?

ATT_RETRN CHAR*4 O RETURNED ATTITUDE TYPE

 (32)

ORB_RETRN CHAR*4 O RETURNED ORBIT TYPE

 (32)

VRA R*4 O ?

 (32)

VDEC R*4 O ?

 (32)

N_TRG R*4 O ?

 (32)

OBC_COM R*4(4) O ?

STATUS I*4 O READ STATUS (IN FILE)

IFILL1 I*4 O FILL

 (229)

NTMX_P I*4 I NUMBER OF DATA IN EMAF

 VALUE IS 32

IBLKMX_P I*4 I Number of blocker regions.

 VALAUE IS 9

NRET_P I*4 I Number of detectors

 VALUE IS 20

IETLMX_P I*4 I Max Number of target spectral

 frequencies on any blocker

 region VALUE IS 9

IOS_RD I*4 O READ ERROR STATUS. 0:NO

 ERROR

4.5 Level 1 C Software

As in the Fortran case, the software consists of one function which users can call to read both the level 1 header and data records. Additional software in the form of a sample driver, a file name generation routine, and a file open routine are provided. A procedure is also provided to link the driver and routines. The resulting executable can be used to read the data and write selected portions to an output file for analysis. Details are given in the Appendix

4.5.1 C Code to Read Level 1 Data (fth_read_claes_l1_ns_c).

C function fth_read_claes_l1_ns_c (file fth_read_claes_l1_ns_c.c) reads the CLAES level 1 data (subtype CLAES), both header and data records.

Usage:

 void fth_read_claes_l1_ns_c (FILE* ifp, int ihdr,

 int minutes,int* minutes_tot,

 int* minutrd1,int* minutesv2,int* minute_pm_driver,

 int* uars_day,int* ret_dattim,int* req_dattim,

 float* ver_offsets,float hclradiances[3][ietlmx],

 float smcradiances[nret][ietlmx][iblkmx],

 float latlon[2][iblkmx],int* minute_atm,int*command_mode,

 int* obcsftware_vrs,int* framecount,

 float* tprad16,float* solar_zen16,

 float* placehold,

 int* itr,int time[2][ntmx],char att_typ_ver[ntmx][12],

 char orb_typ_ver[ntmx][4],

 float* alamm,float sat_pos[3][ntmx],

 float sat_vel[3][ntmx],

 float ypr[3][ntmx],

 float ypr_rate[3][ntmx],float* depr,float* tplat,

 float* tplon,

 float* tpalt,float* tplaz,

 float* gmt,float* solar_zen,float* slat,float* slon,

 float* tprad,char att_retrn[ntmx][4],

 char orb_retrn[ntmx][4] float* vra,float* vdec,

 int* n_trg,float* obc_com,

 int* status,

 int* ifill1,int* ios_rd)

Argument list description:

NAME TYPE I/O DESCRIPTION

---- ---- --- ------------------------

ifp file* i logical unit input file

ihdr i*4 i 0:read data record

 1:read header record

 (record 1)

minutes i*4 i minutes+1 is record number

 to be read

minutes_tot i*4 o number of data records in

 file

 obtained from header

 record

minutrd1 i*4 o should be equalt to input

 minutes denoting correct

 record was read.

minutesv2 i*4 o ?

 (1719)

minute_pm_driver i*1 o ?

uars_day i*4 o uars day

ret_dattim i*4(2) o returned yrday and msec(?)

req_dattim i*4(2) o requested yrday and msec(?)

ver_offsets r*4(9) o these track vertical motion of

 the focal plane relative to

 nominal,these are obtained

 from algorithms

 applied to o/a and laam data.

hclradiances r*4 o obvious

 (3,9)

smcradiances r*4 o radiances interpolated to

 (20,9,9) one grid.

latlon r*4 o the latitude and longitude

 (2,9) of the tangent point for the

 10th detector for data taken

 for each emaf and for each

 blocker position. this data

 required for global mapping

 routines to be installed later

minute_atm i*4 o ?

command_mode i*4 o computer command_mode

obcsftware_vrs i*4 o this is stuff that paul bailey

framecount i*4 o wanted in the l1 data such as

 mode #,version #, etc.to

 output claes onboard

 computer command_mode

tprad16 r*4 o tprad(16)

solar_zen16 r*4 o soalr_zen(16)

placehold r*4(10) o ?

itr i*4 o ?

time i*4 o ?

 (2,32)

att_typ_ver char*12 o attitude type

 (32)

orb_typ_ver char*4 o orbit type

 (32)

alamm r*4 o

 (32)

sat_pos r*4 o satellite position

 (3,32)

sat_vel r*4 o satel;ite velocity

 (3,32)

ypr r*4 o yaw pitch roll

 (3,32)

ypr_rate r*4 o yaw pitch roll rate

 (3,32)

depr r*4(32) o ?

tplat r*4(32) o tangent point latitude(?)

tplon r*4(32) o tangent point longitude(?)

tpalt r*4(32) o the o/a quantity tpalt will

 be used in the sense of an

 offset that varies in time

 within the emaf to facilitate

 the procedure. the values for

 tpalt will refer to a point on

 the claes array that lies

 directly between the 10th and

 11th detector.

tplaz r*4(32) o ?

gmt r*4(32) o ?

solar_zen r*4(32) o solar zenith angle(?)

slat r*4(32) o satellite latitude(?)

slon r*4(32) o satellite longitude(?)

tprad r*4(32) o ?

att_retrn char*4 o returned attitude type

 (32)

orb_retrn char*4 o returned orbit type

 (32)

vra r*4 o ?

 (32)

vdec r*4 o ?

 (32)

n_trg r*4 o ?

 (32)

obc_com r*4(4) o ?

status i*4 o read status (in file)

ifill1 i*4 o fill

 (229)

ntmx_p i*4 i number of data in emaf

 value is 32

iblkmx_p i*4 i number of blocker regions.

 valaue is 9

nret_p i*4 i number of detectors

 value is 20

ietlmx_p i*4 i max number of target spectral

 frequencies on any blocker

 region value is 9

ios_rd i*4 o read error status. 0:no

 error

As noted earlier, for the corresponding Fortran access routine, there is currently no independent documentation available which describe the variables other than the in-line comments of the original CLAES Fortran code.

4.5.2 Level 1 C Array Transform Routines

Because C and Fortran storage for multidimensional arrays are not consistent with each other, software is needed to transform the multidimensional arrays after reading from disk so that they can be interpreted in the same manner by both C and Fortran. These functions are as follows:

 for_c_mtrx_2 (for_c_mtrx_2.c)

 for_c_mtrx_3 (for_c_mtrx_3.c)

 int_for_c_mtrx_2 (int_for_c_mtrx_2.c)

 int_for_c_mtrx_3 (int_for_c_mtrx_3.c)

 ch_for_c_mtrx_2 (ch_for_c_mtrx_2.c)

 ch_for_c_mtrx_3 (ch_for_c_mtrx_3.c)

 test_nan_c (test_nan_c.c)

The names in parenthesis are the corresponding file names. Users do not need to know how to use these functions, as they are called only by the function routine fth_read_claes_l1_ns_c.c. The link procedure file given in the Appendix will automatically link these routines.

4.6 Level 2 Fortran Software

The software consists of one routine which users can call to read the level 2 file of subtype CLAES. Additional software in the form of a sample driver, a file-name generation routine, and a file open routine are provided. A procedure is also provided to link the driver and routines. The resulting executable can be used to read the data and write selected portions to an output file for analysis or plots. Details are given in the Appendix.

4.6.1 Fortran Routine to Read Level 2 Data (claes_l2_rd)

This routine, claes_l2_rd (file claes_l2_rd.for), reads the data records of CLAES level 1 data (subtype CLAES). Aside from opening the data file, it is the only routine necessary.

Usage:

 CALL CLAES_L2_RD(LUN_RD,MIN,L2,IOS_RD)

 Argument description.

 ARGUMENT TYPE I/0 DESCRIPTION

 -------- ---- --- --

 LUN_RD I*4 I LOGICAL UNIT NUMBER OF INPUT FILE

 MIN I*4 I THE RECORD NUMBER TO READ

 (ONE "UARS" MINUTE).

 L2 STRUCTURE O RECORD READ

 IOS_RD I*4 O READ STATUS

 (0=O.K.,-1=EOF, 1=ERROR)

The record L2 has the following structure:

 STRUCTURE /L2/

 CHARACTER*40 SFDU

 INTEGER MINUTES

 INTEGER RET_DATTIM(2)

 INTEGER UARS_DAY

 REAL ZRRETN(NLV2,IBLKMX)

 REAL PRRETN(NLV2,IBLKMX,2) ! 1st dimension is the datum, the 2nd

 REAL TRRETN(NLV2,IBLKMX,2) ! is quality, which may be a standard

 REAL AEROSOL(NLV2,IBLKMX,2) ! deviation, a code, or a combination

 REAL QRETN(NLV2,N_CLAES_SPEC,2) ! of those.

 REAL SATVEL(3,IBLKMX) ! OA variables required for the

 REAL XLAT(IBLKMX) ! G&ATS mapping program.

 REAL YLAT(IBLKMX)

 REAL XLON(IBLKMX)

 REAL XLAZ(IBLKMX)

 REAL XALT(IBLKMX)

 REAL PLACEHOLDER(51)

 END STRUCTURE

 RECORD /L2/ L2

4.7 Level 2 C Software

As in the Fortran case, the software consists of one function routine which users can call to read the level 2 file of subtype CLAES. Additional software in the form of a sample driver, a file-name generation routine, and a file open routine are provided. A procedure is also provided to link the driver and routines. The resulting executable can be used to read the data and write selected portions to an output file for analysis or plots. Details are given in the Appendix.

4.7.1C Code to Read Level 2 data (claes_l2_rd_c)

Function claes_l2_rd_c (file claes_l2_rd_c.c) reads the CLAES level 2 data records.

Usage:

 claes_l2_rd_c (FILE* fp_rd,int min,struct l2 *l2,int* ios);

 claes_l2_rd_c(fp_rd,min,&l2,&ios)

 ARGUMENT TYPE I/0 DESCRIPTION

 -------- ---- --- ----------------------------------

 fp_rd FILE* I FILE POINTER TO INPUT FILE

 min int I THE RECORD NO. TO READ

 ONE PER "UARS" MINUTE.

 l2 structure O OUTPUT RECORD

 ios int O READ STATUS (0=O.K.

 -1 = eof, 1 = error)

The record l2 conforms to the structure

 struct l2 {

 char sfdu[40];

 int minutes ;

 int ret_dattim[2];

 int uars_day ;

 float zrretn[nlv2][iblkmx];

 float prretn[nlv2][iblkmx][2];/*1st dim is the datum & the 2nd */

 float trretn[nlv2][iblkmx][2];/*is quality, either standard */

 float aerosol[nlv2][iblkmx][2]; /* deviation, a code, or a*/

 float qretn[nlv2][n_claes_spec][2]; /* combination of those.*/

 float satvel[3][iblkmx]; /* OrbAtt variables required for the */

 float xlat[iblkmx]; /* G & ATS mapping program. */

 float ylat[iblkmx];

 float xlon[iblkmx];

 float xlaz[iblkmx];

 float xalt[iblkmx];

 float placeholder[51];

 } l2;

4.7.2 Level 2 C Array Transform Functions

See Section 4.5.2

Appendix: Additional Software

Sample software that uses the file access software described above is described in this Appendix. It should be noted that the software described here is not a formal part of the required software package, and is provided only as a convenience to users. The software described below consists of sample drivers, and functions and routines that generate file names and open the files. These are provided in Fortran and C.

This software, combined with the access software described earlier in the main text, is self-contained, and can be linked into executables. Link procedures are provided and described below.

A.1 Additional Level 0 Fortran Software.
A.1.1 Level 0 Fortran File Open Routine (opn_l0_file)

The Fortran routine opn_l0_file (file opn_l0_file.for) opens a UARS level 0 file with the proper attributes. It calls routine gen_l0_name (file gen_l0_name.for) to generate the needed filenames based on user-input values such as the instrument acronym, the subtype, the uars day, and the data version, as described above. For each data version, there is a cycle number that is greater than or equal to 1. Users need not know the cycle number as long as the variable ICYC_MAX is set to be larger than the actual cycle number of the file. A value of 10 for ICYC_MAX is usually large enough. Routine opn_l0_file will begin with cycle number 1 and will increment cycle numbers until a file is successfully opened or until ICYC_MAX is reached. The data version number and the cycle number are determined by production processing. The data version number corresponds to the software version that was used to generate the file, and the cycle number is incremented each time reprocessing was needed for the same file using the same software.

Usage:

 CALL OPN_L0_FILE(INSTR,IUARS_DAY,IVER_IN,

 & ICYC_MAX,ITYPE,IN_RECL,ICYC,LUN,FLNAME,IVAR,IDIRECT,IOS)

 ARGUMENT LIST DESCRIPTION

 ARGUMENT TYPE I/0 DESCRIPTION

 -------- ---- --- -------------------------------------

 INSTR CH*12 I INSTRUMENT ACRONYM. e.g.,

 claes, haloe, hrdi, isams, mls, pem,

 solstice, susima, susimb, windii,

 acrim,

 engineering, spacecraft, obc, quality

 IUARS_DAY I*4 I UARS DAY.

 IVER_IN I*4 I DATA VERSION.

 ICYC_MAX I*4 I MAXIMUM CYCLE NUMBER TO TRY.

 ITYPE I*4 I SET LAST 4 CHARACTERS OF INPUT FILE

 NAME. 1: PROD

 2: BNBE

 3: BNLE

 -2: BVBE

 -3: BVLE

IN_RECL I*4 I RECORD LENGTH (WORDS) OF

 FILE IF FIXED LENGTH.

 IF VALUE IS GT 0 FILE IS OPENED

 AS WITH RECL KEYWORD SET TO VALUE OF

 IN_RECL.

ICYC I*4 I/O IF 0 ON INPUT, ROUTINE WILL

 TRY TO OPEN EXISTING FILE. CYCLES

 NUMBERS FROM 1 TO ICYC_MAX WIIL BE

 TRIED. IF EXISTING FILE IS FOUND,

 ICYC IS RETURNED. IF FILE NOT FOUND,

 ICYC IS SET BACK TO 0.

 LUN I*4 I/O LOGICAL UNIT NUMBER OF FILE.

 IF NOT ZERO ON INPUT, THE INPUT VALUE

 IS USED TO OPEN THE FILE.

 IF ZERO ON INPUT, LUN WILL

 BE SET TO 95 (INPUT) IF ICYC IS 0,

 AND TO 96 (OUTPUT) IF ICYC IS NOT 0.

 FLNAME CH*50 O FLNAME OF FILE.

 IVAR I*4 I IF O, OPEN FOR FIXED RECORD LENGTH

 IF -1, OPEN WITH KEYWORD RECORDTYPE

 SET TO 'SEGMENTED'

 IF -2, OPEN WITH KEYWORD RECORDTYPE

 SET TO 'VARIABLE'

 IDIRECT I*4 I INPUT 0:SEQUENTIAL ACCESS,1:DIRECT

 IOS I*4 O STATUS.

A.1.2 Level 0 Fortran File Name Routine (gen_l0_name)

Routine gen_l0_name (file gen_l0_name.for) generates the correct file name based on user-input values of the instrument and subtype acronyms, the UARS day number, and the file data version.

This routine is called only by opn_l0_file, and users only need to link this routine.

Usage:

 CALL GEN_L0_NAME(INSTR,IUARS_DAY,FNAME,IVER,ICYC,

 & ITYPE)

 ARGUMENT DESCRIPTION:

 ARGUMENT TYPE I/0 DESCRIPTION

 -------- ---- --- ---------------------------------------

 INSTR CH*12 I INSTRUMENT ACRONYM.

 IUARS_DAY I*4 I UARS DAY.

 IVER I*4 I DATA VERSION.

 ICYC I*4 I DATA VERSION.

 FNAME CH*50 O filename

A.1.3 Level 0 Sample Fortran Driver and Link Procedure

An example of a driver that uses fth_readl0 (file fth_readl0.for) to read all types of level 0 files is provided and given in file

 get_l0.for

The command/script file

 get_l0.com

can be used to link and generate an executable named

 get_l0.exe

For linking, in addition to the sample driver (file get_l0.for), the routines fth_readl0 (file fth_readl0.for), opn_l0_file (file opn_l0_file.for), gen_l0_name (file gen_l0_name.for), swap16 (file swap16.for), swap32 (file swap32.for), and swap64 (file swap64.for), (as noted earlier) are needed as well.

Upon running program get_l0.exe interactively, the following prompt appears on the screen:

ENTER FILE TYPE NUMBER

 1:CLAES,2:HALOE,3:HRDI,4:ISAMS,5:MLS,6:PEM

 7:SOLSTICE,8:SUSIMA,9:SUSIMB,10:WINDII,11:ACRIM

 12:ENGINEERING,13:SPACECRAFT,14:OBC,15:QUALITY

ENTER UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER'

(-1 FOR BOTH TO DO ALL DATA RECORDS)

DATA VERSION NUMBER,WRITE ASCI FILE[0/1]

SWAP BYTES[0/1]

An example of a user input to this prompt is

12 130 1 10 2 1 1

The different input variables are separated with blanks. As described in the prompt, the first input, '12', selects the ENGINEERING file to open and read. The 130 selects the UARS day to read (there is one file for each day). Recall that UARS day number 1 is September 12, 1991, and January 1 1992 corresponds to UARS day 112. The '1 10' selects the first and last data records wanted (in this case the first 10 records). The next input, '2', is the file data version number. The next to last input, '1', means that an output file (in ASCII) of selected data will be written. The last input, also '1', is used for big endian computers, and a value of '0' is input for little endian systems.

With the above input, the program will read the first 10 data records of the level 0 data file named

 engineering_l0_d0130.v0002_c01_prod

and write a text file named

 engineering_l0_d0130.v0002_c01_asci

containing certain portions of data from the 10 selected records.

UARS file name conventions have been described in Section 1.1. Here, the output file name is the same as the input level 0 file except for the last 4 characters. In the above example, the user need not know the cycle number because the software first tries cycle number 1 and if needed, increments the cycle number until the file is found, or until a preset maximum is reached. This is the value of icyc_max and is currently set to 5. See the previous subsection on routine OPN_L0_FILE for more details.

A.2 Additional Level 0 C Software.

A.2.1 Level 0 C File Open Function Routine (opn_l0_file_c)

The C function routine opn_l0_file_c (file opn_l0_file_c.c) opens a UARS level 0 file with the proper attributes. It calls gen_l0_name_c (file gen_l0_name_c.c) to generate the file name based on user-input values such as the acronyms for instrument and parameter, the uars day number, and the data version number, which have been described above. The use of this function parallels that for the Fortran version, which is described in Section A.1.1.

Usage:

 void opn_l0_file_c(char *instr,int iuars_day,int iver_in,

 int icyc_max,int itype_rd,int in_recl,int *icyc,FILE **fp_rd,

 char *flname_rd,int *ios_rd);

 opn_l0_file_c(instr,iuars_day,iver_in,icyc_max,itype_rd,

 in_recl,&icyc,&fp_rd,flname_rd,&ios_rd);

 arguement type i/0 description

--

 instr ch*12 i instrument acronym.

 iuars_day i*4 i uars day. (e.g., sept 12, 1991 is

 uars day 1, jan 1 1992 is uars

 day 112; jan 1 1993 is uars day 478)

 iver_in i*4 i data version.

 icyc_max i*4 i maximum cycle number to try.

 itype i*4 i set last 4 characters of input file

 name.

 1: prod

 2: bnbe

 3: bnle

 4: asci

 in_recl i*4 i record length (bytes) of file if fixed

 length.

 icyc i*4 i/o nominally 0 on input.

 if 0 on input, routine will assume an

 existing file. cycles number will be

 incremented from 1 to icyc_max until

 success. if existing file is found,

 icyc is returned.

 ifp FILE** o pointer to file pointer

 flname ch*50 o flname of file.

 ios i*4 o status of open.

A.2.2 Level 0 C File Name Function Routine (gen_l0_name_c)

Function routine gen_l0_name_c (file gen_l0_name_c.c) generates the correct file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version. This routine is called only by

opn_l0_file_c.c, and users only need to link this routine.

A.2.3 Level 0 Sample C Driver and Link Procedure

An example of a driver that uses mcb_readl0_c to read all types of level 0 files is provided and given in file

 get_l0_c.c

The command/script file

 cclink_get_l0.com

can be used to compile, link, and generate an executable named

 get_l0_c.x

For linking, in addition to the sample driver (file get_l0_c.c), the functions mcb_readl0_c (file mcb_readl0_c.c), opn_l0_file_c (file opn_l0_file_c.c), gen_l0_name_c (file gen_l0_name_c.c), swap16_c (file swap16_c.c), swap32_c (file swap32_c.c), and swap64_c (file swap64_c.c) (noted earlier) are needed as well.

Upon running program get_l0_c.x interactively, the following prompt appears on the screen:

ENTER INSTRUMENT NUMBER

 1:CLAES,2:HALOE,3:HRDI,4:ISAMS,5:MLS,6:PEM

 7:SOLSTICE,8:SUSIMA,9:SUSIMB,10:WINDII,11:ACRIM

 12:ENGINEERING,13:SPACECRAFT,14:OBC,15:QUALITY

ENTER UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER

(-1 FOR BOTH TO DO ALL DATA RECORDS)

DATA VERSION NUMBER

WRITE ASCI FILE (0=NO,1=YES,2=to SCREEN)

SWAP BYTES (0=NO,1=YES)

An example of a user input to this prompt is

5 486 1 3 2 1 1

The different input variables are separated with blanks. As described

in the prompt, the first input, '5', selects the MLS file to

open and read. The '486' selects the UARS day to read (there is one file

for each day). Recall that UARS day number 1 is September 12, 1991, and

January 1 1992 corresponds to UARS day 112. The '1 3' selects the first

and last data records wanted (in this case the first 3 records). The

next input, '2', is the file data version number. The next to last input, '1', means that an ASCII output file of selected data will be written. The last input, also '1', is used for big endian computers, and a value of '0' is input for little endian systems.

With the above input, the program will read the first 3 data records of

the level 0 data file named

 mls_l0_d0486.v0002_c01_prod

and write a text file named

 mls_l0_d0486.v0002_c01_asci

containing certain portions of data from the 3 selected records.

UARS file name conventions have been described in Section 1.1. Here,

the output file name is the same as the input level 0 file except for

the last 4 characters. In the above example, the user need not know the

cycle number because the software first tries cycle number 1 and if

needed, increments the cycle number until the file is found, or until a

preset maximum is reached. This is the value of icyc_max and is currently set to 5. See the previous subsection on routine opn_l0_file_c for more details.

A.3 Additional Level 1 Fortran Software.

A.3.1 Level 1 Fortran File Open Routine (opn_l1_file)

The Fortran routine opn_l1_file (file opn_l1_file.for) opens a UARS level 1 file with the proper attributes. It calls routine gen_l1_name (file gen_l1_name.for) to generate the needed file name based on user-input values such as acronyms for the instrument and parameter, the uars day, and the data version number. Details are the same as described above in Section A.1.1 for the opn_l0_file routine.

An example of using this routine is given by the sample driver in file get_claes_l1_claes_ns.for noted above.

Usage:

 CALL OPN_L1_FILE(INSTR,PARAM,IUARS_DAY,IVER_IN,

 & ICYC_MAX,ITYPE_IN,IN_RECL,ICYC,LUN,FLNAME,IVAR,

 & IDIRECT,IOS)

Argument list description:

 ARGUMENT TYPE I/0 DESCRIPTION

--

 INSTR CH*12 I INSTRUMENT ACRONYM.

 PARAM CH*12 I MEASURE PARAMETER.

 IUARS_DAY I*4 I UARS DAY. (E.G., SEPT 12,

 1991 IS UARS DAY 1, JAN 1

 1992 IS UARS DAY 112;

 JAN 1 1993 IS UARS DAY

 478)

 IVER_IN I*4 I DATA VERSION NUMBER.

 ICYC_MAX I*4 I MAXIMUM DATA CYCLE NUMBER

 TO TRY.

 ITYPE_IN I*4 I USED TO DETERMINE LAST 4

 CHARACTERS OF FILE NAME:

 0 OR 1: PROD

 2: BNBE

 3: BNLE

 4: ASCI

 ALSO USED FOR CONVERSION

 IF APPLICABLE.

 1: NOCONVERSION

 2: CONVERT = 'BIG ENDIAN'

 3: CONVERT = 'LITTLE

 ENDIAN'

 IN_RECL I*4 I RECORD LENGTH (WORDS) OF

 FILE IF FIXED LENGTH.

 IF VALUE IS GT 0 FILE IS

 OPENED WITH RECL KEYWORD

 SET TO VALUE OF IN_RECL.

 IF VALUE IS ZERO, FILE

 WILL BE OPENED WITHOUT

 RECL KEYWORD. AND

 DEFAULT IS USED. FOR

 VARIABLE RECORDS,

 VALUES FOR VMS ARE:

 SEGMENTED:2048(BYTES)

 OTHERS:133

 ICYC I*4 I/O SHOULD BE NOMINALLY SET

 TO 0.

 IF 0 ON INPUT, ROUTINE

 WILL TRY TO OPEN EXISTING

 FILE. CYCLES NUMBERS FROM

 1 TO ICYC_MAX WIIL BE

 TRIED. IF EXISTING FILE IS

 FOUND,ICYC IS RETURNED. IF

 FILE NOT FOUND,

 ICYC IS INCREMENTED BY 1

 UP TO ICYC_MAX.

 IF NOT ZERO ON INPUT, FILE

 IS ASSUMED NOT TO EXIST

 AND A NEW FILE IS OPENED

 USING THE VALUE IF ICYC.

 LUN I*4 I/O LOGICAL UNIT NUMBER OF

 FILE.

 IF NOT ZERO ON INPUT, THE

 INPUT VALUE

 IS USED TO OPEN THE FILE.

 IF ZERO ON INPUT, LUN WILL

 BE SET TO 95 (INPUT) IF

 ICYC IS 0.

 AND TO 96 (OUTPUT) IF ICYC

 IS NOT 0.

 FLNAME CH*50 O FLNAME OF FILE.

 IVAR I*4 I IF O, OPEN FOR FIXED

 RECORD LENGTH,

 AND IS THE CASE FOR CLAES.

 IF -1, OPEN WITH KEYWORD

 RECORDTYPE SET TO

 'SEGMENTED'(VMS ONLY)

 IF -2, OPEN WITH KEYWORD

 RECORDTYPE SET TO

 'VARIABLE'

 IDIRECT I*4 I INPUT 0:SEQUENTIAL

 ACCESS,1:DIRECT.

 DIRECT IS APPLICABLE TO

 CLAES

 IOS I*4 O STATUS AFTER ATTEMPT TO

 OPEN.

A.3.2 Level 1 Fortran File Name Routine (gen_l1_name)

Routine gen_l1_name (file gen_l1_name.for) generates the correct file name based on user-input values of the instrument and subtype acronyms, the UARS day number, and the file data version number.

This routine is called only by opn_l1_file, and users only need to link this routine.

A.3.3 Level 1 Sample Fortran Driver and Link Procedure

An example of a driver which uses fth_read_claes_l1_ns is provided and given in file

 get_claes_l1_claes_ns.for

The file

 get_claes_l1_claes_ns.com

can be used to link and generate an executable named

 get_claes_l1_claes_ns.exe

Upon running program get_claes_l1_claes_ns.exe interactively, the following prompt appears on the screen:

ENTER INSTR,SUBTYPE(LWR CASE, IN SNGL QUOTES)

BEGIN UARS DAY,END UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER

(-1 FOR BOTH TO DO ALL DATA RECORDS)

DATA VERSION

IN FILE TYPE:1:VMS(.PRO0),2:BIG ENDIAN,3:LITTLE

WRITE SELECTED DATA TO PLOT?[0:NO,1:YES]

An example of a user input to this prompt is

'claes' 'claes' 130 130 1 10 8 2 1

The different input variables are separated with blanks. The first string is the claes instrument acronym, and the second is the subtype acronym. The '130 130' selects the begin and end UARS days to read (there is one file for each day). Here, only the file for UARS day 130 is processed. UARS day number 1 is September 12, 1991, and January 1 1992 corresponds to UARS day 112. The '1 10' selects the first and last data records wanted (in this case the first 10 records). The '8' is the file data version number, and the '2' is used for the file name generation (big endian). The last input, namely, '1', chooses the option to write the selected records to a text file for analysis. A '0' does not produce a file.

With the above input, the program will read the header record and the first 10 data records of the level 1 data file named

 claes_l1_sclaes_d0130.v0008_c01_bnbe

and write a text file named

 claes_l1_sclaes_d0130.v0008_c01_asci

containing certain portions of data from the 10 selected records.

A.4 Additional Level 1 C Software.

A.4.1 Level 1 C File Open Function (opn_l1_file_c)

The C function routine opn_l1_file_c (file opn_l1_file_c.c) opens a UARS level 1 file with the proper attributes. It calls routine gen_l1_name_c (file gen_l1_name_c.c) to generate the filename based on input values such as acronyms for the instrument (i.e., claes), parameter (i.e., claes), uars day, and the data version number, which have been described previously. Details are the same as described above in Section A.1.1 for the opn_l0_file routine.

Usage:

 opn_l1_file_c(char* instr,char* param,int iuars_day,

 int iver_in,int icyc_max,int itype_in,

 int in_recl,int* icyc,FILE** ifp,

 char* flname,int* ios)

Argument list description:

argument type i/0 description

-------- ---- --- -------------------------------

instr char[12] i instrument acronym.

param char[12] i measure parameter.

iuars_day int i uars day. (e.g., sept 12, 1991

 is uars day 1, jan 1 1992 is

 uars day 112; jan 1 1993 is

 uars day 478)

iver_in int i data version.

icyc_max int i maximum cycle number to try.

itype int i set last 4 characters of input

 file name.

 1: prod

 2: bnbe

 3: bnle

 4: asci

in_recl int i record length (bytes) of file

 if fixed length.

icyc int i/o nominally 0 on input.

 if 0 on input, routine will

 assume an existing file. Cycles

 number will be incremented from

 1 to icyc_max until

 success. if existing file is

 found,icyc is returned.

ifp FILE** o pointer to file pointer

flname char[50] o flname of file.

ios int o status of open.

A.4.2 Level 1 C File Name Function (gen_l1_name_c)

The function routine in file gen_l1_name_c.c generates the file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version. This routine is called only by opn_l1_file_c.c, and users only need to link this routine.

A.4.3 Level 1 Sample C Driver and Link Procedure

A sample driver that uses the above functions is contained in file

 get_claes_l1_claes_ns_c.c

The compile and link file name is

 get_claes_l1_claes_ns_c.com

Upon executing this file, an executable is created in file

 get_claes_l1_claes_ns_c.exe

Use of this C program is similar to that for the corresponding Fortran program described earlier. Details are repeated here for convenience.

Upon running program

 get_claes_l1_claes_ns_c.exe

interactively, the following prompt appears on the screen:

enter instr,param(lwr case,no quotes)

begin uars day,end uars day

enter first data record number, last data record number

(-1 for both to read all data records)

data version

in file type (0 or 1:vms,2:big endian,3:little endian

write output (0:no,1:yes)

An example of a user input to this prompt is

claes claes 130 130 1 10 8 2 1

The different input variables are separated with blanks. The first string is the claes instrument acronym, the second is the subtype acronym. The '130 130' select the begin and end UARS days (there is one file for each day) to read. UARS day number 1 is September 12, 1991; January 1 1992 corresponds to UARS day 112. The input '1 10' selects the first and last data records wanted (in this case the first 10 records). The '8' is the file data version number, the '2' is used for the file name generation (2 denotes big endian). The last input, namely '1', chooses the option to write portions of the selected records to a text file for analysis. A '0' does not produce a file.

With the above input, the program will read the header record and the first 10 data records of the level 1 data file named

 claes_l1_sclaes_d0130.v0008_c01_bnbe

and write a text file named

 claes_l1_sclaes_d0130.v0008_c01_asci

that contains certain portions of data from the 10 selected records.

A.5 Additional Level 2 Fortran Software

A.5.1 Level 2 Fortran File Open Routine(opn_l2_file)

Routine opn_l2_file (file opn_l2_file.for) opens a UARS level 2 file with the proper attributes. It calls routine GEN_L2_NAME to generate the needed filename based on input values such as acronyms for the instrument and parameter, for the uars day number, and the data version number, which have been described above. Details are the same as described above in Section A.1.1 for the opn_l0_file routine.

Usage:

 CALL OPN_L2_FILE(INSTR,PARAM,IUARS_DAY,IVER_IN,

 & ICYC_MAX,ITYPE_IN,IN_RECL,ICYC,LUN,FLNAME,IVAR,

 & IDIRECT,IOS)

Argument list description:

ARGUMENT TYPE I/0 DESCRIPTION

-------- ---- --- -----------------------------------

INSTR CH*12 I INSTRUMENT ACRONYM.

PARAM CH*12 I MEASURE PARAMETER.

IUARS_DAY I*4 I UARS DAY. (E.G., SEPT 12, 1991 IS

 UARS DAY 1, JAN 1 1992 IS UARS

 DAY 112; JAN 1 1993 IS UARS DAY

 478)

IVER_IN I*4 I DATA VERSION NUMBER.

ICYC_MAX I*4 I MAXIMUM DATA CYCLE NUMBER TO TRY.

ITYPE_IN I*4 I USED TO DETERMINE LAST 4 CHARACTERS

 OF FILE NAME:

 0 OR 1: PROD

 2: BNBE

 3: BNLE

 4: ASCI

 ALSO USED FOR CONVERSION IF

 APPLICABLE.

 1: NOCONVERSION

 2: CONVERT = 'BIG ENDIAN'

 3: CONVERT = 'LITTLE ENDIAN'

IN_RECL I*4 I RECORD LENGTH (WORDS) OF

 FILE IF FIXED LENGTH.

 IF VALUE IS GT 0 FILE IS OPENED

 WITH RECL KEYWORD SET TO VALUE OF

 IN_RECL.

 IF VALUE IS ZERO, FILE WILL BE

 OPENED WITHOUT RECL KEYWORD, AND

 DEFAULT IS USED. FOR VARIABLE

 RECORDS,VALUES FOR VMS ARE:

 DEFAULTS:SEGMENTED:2048(BYTES)

 OTHERS:133

ICYC I*4 I/O SHOULD BE NOMINALLY SET TO 0.

 IF 0 ON INPUT, ROUTINE WILL

 TRY TO OPEN EXISTING FILE. CYCLES

 NUMBERS FROM 1 TO ICYC_MAX WIIL BE

 TRIED. IF EXISTING FILE IS FOUND,

 ICYC IS RETURNED. IF FILE NOT

 FOUND,

 ICYC IS INCREMENTED BY 1 UP TO

 ICYC_MAX.

 IF NOT ZERO ON INPUT, FILE IS

 ASSUMED NOT TO EXIST AND A NEW

 FILE IS OPENED

 USING THE VALUE IF ICYC.

LUN I*4 I/O LOGICAL UNIT NUMBER OF FILE.

 IF NOT ZERO ON INPUT, THE INPUT

 VALUE IS USED TO OPEN THE FILE.

 IF ZERO ON INPUT, LUN WILL

 BE SET TO 95 (INPUT) IF ICYC IS 0.

 AND TO 96(OUTPUT) IF ICYC IS NOT 0.

FLNAME CH*50 O FLNAME OF FILE.

IVAR I*4 I IF O, OPEN FOR FIXED RECORD LENGTH

 IF -1, OPEN WITH KEYWORD RECORDTYPE

 SET TO 'SEGMENTED'

 IF -2, OPEN WITH KEYWORD RECORDTYPE

 SET TO 'VARIABLE'

IDIRECT I*4 I INPUT 0:SEQUENTIAL ACCESS,1:DIRECT

IOS I*4 O STATUS AFTER ATTEMPT TO OPEN.

A.5.2 Level 2 Fortran File Name Routine (gen_l2_name)

Routine gen_l2_name (file gen_l2_name.for) generates the correct file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version number. This routine is called only by OPN_L2_FILE.FOR, and users only need to link this routine.

A.5.3 Level 2 Sample Fortran Driver and Link Procedure.

The file name of the sample driver is

 get_claes_l2_main.for.

and the link file is given in

 link_get_claes_l2_main.com

Execution of the link file produces an executable in file

 get_claes_l2_main.exe

Upon running the executable interactively, the following prompt appears on the screen:

ENTER INSTR,PARAM,(LWR CASE, IN SNGL QUOTES)

BEGIN UARS DAY,END UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER

(NEGATIVE TO DO ALL DATA RECORDS)

INPUT FILE-TYPE: 0 & 1:VMS(PROD & .PRO0),2:BIG ENDIAN,3:LITTLE END

WRITE SELECTED DATA TO PLOT?[0:NO,1:YES]

DATA VERSION

An example of a user input to this prompt is

'claes' 'claes' 130 130 1 10 2 1 8

The different input variables are separated with blanks. The first string is the claes instrument acronym, the second is the subtype acronym. The '130 130' selects the begin and end UARS days to read (there is one file for each day). UARS day number 1 is September 12, 1991; January 1 1992 corresponds to UARS day 130. The '1 10' selects data records 1 to 10 to read. The '2' is used for the file name generation (2 for big endian). The next to last input, namely '1' chooses the option to write the 10 selected records to a text file for analysis. A '0' does not produce a file. The '8' is the file data version number

With the above input, the program will read the level 2 data file named

 claes_l2_sclaes_d0130.v0008_c01_bnbe

and write a text file

 claes_l2_sclaes_d0130.v0008_c01_asci

containing certain portions of data from the selected records.

A.6 Additional Level 2 C Software

A.6.1 Level 2 C File Open Code (opn_l2_file_c)

The C function routine opn_l2_file_c (file opn_l2_file_c.c) opens a UARS level 2 file with the proper attributes. It calls function gen_l2_name_c (file gen_l2_name_c.c) to generate the file name based on input values such as acronyms for the instrument and the parameter, for the uars day number, and the data version number, which have been described above. Details are the same as described above in Section A.1.1 for the opn_l0_file routine.

Usage:

 opn_l2_file_c(char* instr,char* param,int iuars_day,int

 iver_in,int icyc_max,int itype_in,int in_recl,int*

 icyc,FILE** ifp,char* flname,int* ios)

Argument list description:

argument type i/0 description

-------- ---- --- --------------------------

instr char[12] i instrument acronym.

param char[12] i measure parameter.

iuars_day int i uars day. (e.g., sept 12,

 1991 is uars day 1, jan 1

 1992 is uars day 112;

 jan 1 1993 is uars day

 478)

iver_in int i data version.

icyc_max int i maximum cycle number to

 try.

Itype int i set last 4 characters of

 input file name.

 1: prod

 2: bnbe

 3: bnle

 4: asci

in_recl int i record length (bytes) of

 file if fixed length.

icyc int i/o nominally 0 on input.

 if 0 on input, routine

 will assume

 an existing file. Cycles

 number will be incremented

 from 1 to icyc_max until

 success. if existing

 file is found, icyc is

 returned.

ifp FILE** o pointer to file pointer

flname char[50] o flname of file.

ios int o status of open.

A.6.2 Level 2 C File Name Function (gen_l2_name_c)

Function gen_l2_name_c (file gen_l2_name_c.c) generates the correct file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version. This routine is called only by opn_l2_file_c.c, and users only need to link this routine.

A.6.3 Level 2 Sample C Driver and Link Procedure

A sample driver that uses the above functions is provided. The file name of the driver is

 get_claes_l2_main_c.c

and the link file is given in

 link_claes_l2_c.com

Execution of the link file produces an executable in file

 get_claes_l2_main_c.exe.

Use of this C program is similar to that for the corresponding Fortran program described earlier. Details are repeated here for convenience.

Upon running the executable interactively, the following prompt appears on the screen:

ENTER INSTR,PARAM,(LWR CASE, IN SNGL QUOTES)

BEGIN UARS DAY,END UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER

(-1 FOR BOTH TO DO ALL DATA RECORDS)

INPUT FILE-type: 0 & 1:VMS(PROD & .PRO0),2:BIG ENDIAN,3:LITTLE END

WRITE SELECTED DATA TO PLOT?[0:NO,1:YES]

DATA VERSION

An example of a user input to this prompt is

claes claes 120 120 1 10 2 1 8

The different input variables are separated with blanks. The first string is the claes instrument acronym, the second is the subtype acronym. The input '120 120' selects the begin and end UARS days to read (there is one file for each day). UARS day number 1 is September 12, 1991 January 1 1992 corresponds to UARS day 112. The '1 10' selects data records 1 to 10 to read, the '2' is used for the file name generation (big endian). The next to last input, namely, '1', chooses the option to write the 10 selected records to a text file for analysis. A '0' does not produce a file. The '8' is the file data version number

With the above input, the program will read the level 2 data file named

 claes_l2_sclaes_d0120.v0008_c01_bnbe

and write a text file

 claes_l2_sclaes_d0120.v0008_c01_asci

containing certain portions of data from the selected records.

PAGE
1

