
April 2017

Version 1.0

Software Version 1.0
Prepared by:

Ruth Monarrez, Project Element Manager
S-NPP Sounder SIPS
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA

Reviewed by:

Thomas Hearty, GES DISC Science Data Support
GSFC Code 610.2
Revision History

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Changes</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-08-19</td>
<td>Initial Release</td>
<td>Ruth Monarrez</td>
</tr>
<tr>
<td>2016-04-06</td>
<td>Beta Release</td>
<td>Ruth Monarrez</td>
</tr>
<tr>
<td>2017-04</td>
<td>Version 1 Release</td>
<td>Ruth Monarrez</td>
</tr>
</tbody>
</table>
Table of Contents

1.0 Introduction .. 1
 1.1 Sounder SIPS ... 1
 1.2 Mission Instrument Description ... 2
 1.3 Data Disclaimer ... 2
 1.4 Contact Information .. 2
 1.5 References .. 2

2.0 ATMS Level 1B Product Overview .. 3
 2.1 Product Granulation and Identification ... 3
 2.2 Algorithm Background .. 3
 2.3 Data Organization .. 4
 2.4 File Format and Structure ... 4
 2.5 Metadata .. 5
 2.6 File Naming Convention ... 5

3.0 Data Contents .. 7
 3.1 Dimensions .. 7
 3.2 Global Attributes ... 8
 3.3 Variable Attributes ... 15
 3.4 Geolocation ... 16
 3.5 Key Science Data Fields .. 16
 3.6 Missing Data / Fill Values .. 17

4.0 Options for Reading the Data .. 18

5.0 Data Services .. 18

Appendix A: calib_degraded Flag ... 19

Appendix B: CDL File Definition .. 20
1.0 Introduction

This document provides basic information for using Version 1 of the Advanced Technology Microwave Sounder (ATMS) Level 1B products produced by the Suomi-National Polar-Orbiting Partnership (S-NPP) Sounder Science Investigator-led Processing System (SIPS) at the NASA Goddard Space Flight Center (GSFC).

The ATMS Level 1B product is geolocated and calibrated to antenna temperature.

The ATMS Level 1A product is not described in detail in this document.

1.1 Sounder SIPS

The Suomi-National Polar-Orbiting Partnership (S-NPP) Sounder SIPS, is one of six SIPSs formed by NASA to provide the processing of level 0 data through level 1, level 2 and level 3 from the Suomi NPP (previously known as NPP) satellite. The Suomi-NPP satellite is managed by the National Polar-orbiting Partnership (NPP) which includes elements from NASA, NOAA and DoD. Specific details about the S-NPP Mission can be found at: http://npp.gsfc.nasa.gov/index.html.

The S-NPP Sounder SIPS is a team made up of the Jet Propulsion Laboratory (JPL) and the Goddard Earth Sciences Data and Information Services Center (GES DISC). JPL provides the overall project management, science algorithm software integration, test and validation support. The GES DISC performs level 0 data acquisition, routine data processing operations. The GES DISC / Distributed Active Archive Center and distribution of the data products and associated documentation.

<table>
<thead>
<tr>
<th>Science Team</th>
<th>SIPS</th>
<th>Instrument(s) Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sounder</td>
<td>Sounder</td>
<td>ATMS and CrIS</td>
</tr>
<tr>
<td>Ozone</td>
<td>Ozone</td>
<td>OMPS</td>
</tr>
<tr>
<td>Ceres</td>
<td>CERES CARS</td>
<td>CERES</td>
</tr>
<tr>
<td>Land</td>
<td>Land</td>
<td>VIIRS</td>
</tr>
<tr>
<td>Atmospheres</td>
<td>Atmospheres</td>
<td>VIIRS</td>
</tr>
<tr>
<td>Ocean</td>
<td>Ocean</td>
<td>VIIRS</td>
</tr>
</tbody>
</table>

The SIPSs may also develop additional products that may help their science teams analyze how well S-NPP products will be useful for continuing ongoing climate studies. Consequently, most SIPSs produce a variety of data products for their science teams. Since it is possible that many of these data products may have general utility to the science community beyond the S-NPP science teams, NASA requests that SIPS products be made available to the public. This is consistent with NASA’s Earth Science Data Policy https://science.nasa.gov/earth-science/earth-science-data/data-information-policy.
1.2 Mission Instrument Description

The S-NPP satellite was launched on October 28, 2011 from Vandenburg Air Force Base in California. The ATMS is one of 5 instruments onboard the S-NPP satellite. The other instruments are: Clouds and the Earth's Radiant Energy System (CERES), Cross-track Infrared Sounder (CrIS), Ozone Mapping and Profiler Suite (OMPS) and Visible Infrared Imaging Radiometer Suite (VIIRS). Table 1.2.1 and Table 1.2.2 contain a summary of the ATMS instrument and platform parameters.

NOTE: The ATMS instrument’s Scan Drive Mechanism on S-NPP has been experiencing additional wear on the bearings. To extend the life of the instrument, a decision was made to perform scan reversals for the purpose of ‘re-wetting’ the bearings. The scan reversals are now occurring twice per orbit, starting Aug 9, 2016. The end result of this maneuver is a slight loss of data. You will notice this loss by Fill Values.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Instrument</th>
<th>Instrument Type</th>
<th>Scan Rate (s)</th>
<th>Scan Range (°)</th>
<th>Scan Pattern</th>
<th>FOR Dia (km, nadir)</th>
<th>Spectral Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-NPP</td>
<td>ATMS</td>
<td>MW</td>
<td>8/3</td>
<td>±53</td>
<td>96</td>
<td>16-75</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Platform</th>
<th>Alt</th>
<th>Orbit Incl. (°)</th>
<th>Equator X Time</th>
<th>Period</th>
<th>Repeat Orbits</th>
<th>Repeat Days</th>
<th>Launch</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-NPP</td>
<td>824</td>
<td>98.7</td>
<td>13:30*</td>
<td>101</td>
<td>228</td>
<td>16</td>
<td>28 Oct 2011</td>
</tr>
</tbody>
</table>

1.3 Data Disclaimer

Version 1.0 ATMS Level 1B data are released to the public as is. Every effort has been made to properly represent the data for which this document describes.

1.4 Contact Information

For information, questions or concerns with this ATMS L1B data set, please contact: Ruth Monarrez at Ruth.Monarrez@jpl.nasa.gov or send your question to: sounder.sips@jpl.nasa.gov.

1.5 References

2.0 ATMS Level 1B Product Overview

The ATMS Level 1B product consists of calibrated radiances and geolocation along with any metadata necessary to use and interpret this product.

2.1 Product Granulation and Identification

The ATMS product is divided into a series of 6-minute segments or granules with each granule making up one file and 240 granules per day. Each file contains all observations for a given type made during a period of exactly 6 minutes. For each day, each 240 files are identified by granule number in the filename. For example, g156 for granule 156 out of 240.

The nominal start time of granule 1 is defined to be 00:00:00. Because both CrIS and ATMS instruments are synced to TAI, the start time of the first 8-second scanset of a day can be anywhere up to 8 seconds later. It moves 1 second with each leap second. If the first scanset starts 8 seconds after the nominal start time, then the data can extend up to 8 seconds past the nominal end time.

The ability to uniquely identify a granule is built in to the ATMS L1B product. This is extremely useful when publishing analysis results. The nominal time coverage, represented as a string: yyyymmddThhmm, is used to construct a unique granule identifier called “gran_id”. gran_id is stored as a global attribute that is also used in the filename, see section 2.6 File Naming Convention.

In addition, there is an observation identifier variable called “obs_id” that can further uniquely identify an observation within the granule. The obs_id is formatted as the gran_id with observation information appended to it.

The format of obs_id is: yyyymmddThhmm.aaaExx where ‘aaa’ is the 3-digit along-track index (001 – 135) and xx is the cross-track index (01 – 96). The “E” indicates earth view.

Example of obs_id: 20170401T2354.001E01

2.2 Algorithm Background

The Sounder SIPS ATMS L1B data products are a product of processing NASA Level 0 data through Level 1A/Geolocation and Level 1B. See Figure 1.

The ATMS Level 1A processing extracts radiance counts from ATMS science telemetry, converts engineering counts from the health and status telemetries into physical measurements such as temperatures.
The L1A geolocation processing derives spacecraft positions and attitude according to spacecraft diary telemetry. It also projects ATMS sounding field-of-views (FOV) onto the topographic surface with geolocation, line-of-site (LOS) view angles, solar angles, and surface parameters such as elevations and land fractions.

The L1B processing then applies calibration coefficients (gain and offset) and non-linearity correction to the radiances counts to convert them to antenna temperatures. L1B also propagates all the geolocation parameters from L1A processing to the L1B product.

Full details of the L1B processing steps and calibrations can be found in the NASA L1b: Advanced Technology Microwave Sounder Algorithm Theoretical Basis Document (ATBD) (Reference 1).

2.3 Data Organization

The ATMS products are divided into a series of 6 minute segments with one segment per file. Each file contains all observations of a given type made during a period of exactly 6 minutes. For each day there are 240 files (also known as granules), identified by granule number in the filename.

2.4 File Format and Structure

The ATMS L1B files, similar to the CrIS L1B files, are in Network Common Data Form, version 4 (NetCDF4)/HDF5 format.
The product format takes advantage of the NetCDF4 data model and makes use of groups, dimensions, variables and attributes to fully describe the science data. Below is a basic structure of a l1b datafile.

```plaintext
c netcdf l1b_atms {
    dimension:
    // global attributes:
    variables:
    group: aux {
        variables:
    } // aux
} // l1b_atms
```

2.5 Metadata

Every effort has been made to ensure that metadata conforms to the Climate and Forecasting (CF), Version 1.6, and Attribute Conventions for Data Discovery (ACDD), Version 1.3, guidelines.

See the full product specification in Appendix B.

For more information on CF, refer to:

http://cfconventions.org/

For more information on ACDD, refer to:

2.6 File Naming Convention

File naming for Sounder SIPS products will be unique and include the following tokens separated by the delimiter ‘.’ For each token that makes up the filename, there will be an attribute in the data product that it maps to (see Table 2.5 Filenaming).

Sounder_SIPS_ID.Platform.Inst_ID.granuleID.product_granularity.granule_number.product_type.variant.version.production_location.prod_timestamp.nc

SNDR.SNPP.ATMS.yyyyymmddThhmm.m06.g196.L1A.std.vmm_mm.G.yymmddhhmmss.nc

SNDR.SNPP.ATMS.yyyyymmddThhmm.m06.g196.L1A.std.vmm_mm_mm.J.yymmddhhmmss.nc

: when produced at JPL

Filename examples:

6-minute ATMS Level 1A & 1B granules:
SNDR.SNPP.ATMS.20150407T1106.m06.g196.L1A.std.v01_00.G.150407123456.nc
Where:

- **Sounder_SIPS_ID** as a project identifier <product_name_project> = SNDR
- **Platform** <product_name_platform> = SNPP
- **Inst_ID** <product_name_instr> = ATMS
- **granuleID** (yyyymmddThhmm) <gran_id> nominal start time where:
 - yyyy = year
 - mm = month of year (01-12)
 - dd = day of month (01-31)
 - hh = hour (00-24)
 - mm = minute (00-59)
- **product_granularity** <product_name_duration> = m06 (6 minute)
- **granule_number** <granule_number> = g###
- **product_type** with an optional identifier for testing <product_type_name_id>
 - L1B for ATMS Level 1B
- **variant** <product_name_variant> = std
- **version** vmm_mm <product_name_version> - eg. v01_08
 - Versioning will be synchronized across Sounder SIPS products
- **production_location** <product_name_producer> - J=SIPS at JPL, G=Operations, T=Test, W = CrIS Team at U Wisc
- **prod_timestamp** so each product has a unique name (yymmddhhmmss) <product_name_timestamp> - 150407123456
- **Extension** (.nc)

Table 2.6 Fileanaming

<table>
<thead>
<tr>
<th>Filename token</th>
<th>Attribute name in CDF (mapping)</th>
<th>Format</th>
<th>Value(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sounder_SIPS_ID</td>
<td>product_name_project</td>
<td>SNDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platform</td>
<td>product_name_platform</td>
<td>SNPP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inst_ID</td>
<td>product_name_instr</td>
<td>ATMS,CrIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>granuleID</td>
<td>gran_id</td>
<td>yyyymmddThhmm</td>
<td>Nominal start time</td>
<td></td>
</tr>
<tr>
<td>product_granularity</td>
<td>product_name_duration</td>
<td>m06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>granule_number</td>
<td>granule_number</td>
<td>g###</td>
<td>g001 – g240</td>
<td>Only for 6-minute granule products</td>
</tr>
<tr>
<td>product_type</td>
<td>product_name_type_id + optional identifier for uniqueness</td>
<td>L1A, L1B, L1BNSR</td>
<td>NSR = Normal Spectral Resolution</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>product_name_version</td>
<td>v01_##; v01_##_##</td>
<td>e.g. v01_08; v01_08_00 (when produced at JPL)</td>
<td></td>
</tr>
</tbody>
</table>
variant | product_name_variant | Freeform text. No whitespace or punctuation except underscore. | std | Used to identify special runs. The default is: std = standard.
--- | --- | --- | --- | ---
production_location | product_name_producer | J: Jet Propulsion Laboratory G: Goddard Space Flight Center T: Test W: University of Wisconsin | J:
Jet
Propulsion
Laboratory G:
Goddard
Space
Flight
Center T:
Test W:
University
of
Wisconsin |
prod_timestamp | product_name_timestamp | yymmddhhmss |

3.0 Data Contents

The ATMS L1B data products are written in NetCDF4 format and therefore makes use of groups, dimensions, variables and attributes (global & variable). Every NetCDF4/HDF5 file contains, at a minimum, one root group which is unnamed.

Attention should be given to quality flags and checked for fill values before being used for any analysis or higher processing of the L1B product.

A full profile of the contents of the files is included in Appendix B.

Selected fields are highlighted in this section.

3.1 Dimensions

Key dimensions used throughout the ATMS L1B product.

<table>
<thead>
<tr>
<th>Dimension name</th>
<th>Size</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>atrack</td>
<td>135</td>
<td>Along-track spatial dimension</td>
</tr>
<tr>
<td>xtrack</td>
<td>96</td>
<td>Cross-track spatial dimension</td>
</tr>
<tr>
<td>channel</td>
<td>22</td>
<td>ATMS channels</td>
</tr>
<tr>
<td>band</td>
<td>5</td>
<td>Microwave bands: K, Ka, V, W, G</td>
</tr>
<tr>
<td>utc_tuple</td>
<td>7</td>
<td>year, month, day, hour, minute, second, msec</td>
</tr>
</tbody>
</table>
3.2 Global Attributes

There are two types of attributes: global & variable. In this section we will talk about global attributes. Global attributes, sometimes referred to as ‘file-level attributes’, provide information about the entire file or 6-minute granule. This includes observation times, publisher and creator information, data provenance, geolocation information. Many attributes are required to conform to the CF & ACDD standards while other attributes are written for consistency with legacy products, hence, you may find some information to be a little redundant or differing in the naming convention.

There are some QA global attributes that should be considered before using the data in analysis or processing. See Table 3.2.2 Global Attributes or Appendix B: CDL File Definition for full definition.

Table 3.2.1 QA

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutomaticQualityFlag</td>
<td>string</td>
<td></td>
<td>Passed: the granule contains a non-degraded calibrated brightness temperature or radiance for at least one channel in a geolocated FOV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Suspect: the granule does not qualify as "Passed" but contains a (possibly degraded) calibrated brightness temperature or radiance for at least one channel (possibly without associated geolocation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Failed: the granule contains no calibrated brightness temperatures/radiances.</td>
</tr>
<tr>
<td>geo_qual</td>
<td>ushort</td>
<td>atrack, xtrack</td>
<td>Overall value of 0 indicates no critical issues.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 2 (surface_loc)- Failed geolocation on Earth topographic surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 3 (DEM) - Could not set FOV surface elevations and land water fraction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 4 (geoid_loc) - Failed geolocation on Earth geoid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 5 (solar_ang) - Failed to set solar zenith or azimuth angles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 6 (spacecraft_ang) - Failed to set spacecraft zenith or azimuth angles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 7 - Unused (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 8 (band_specific) - Failed geolocation of some bands</td>
</tr>
<tr>
<td>qa_no_data</td>
<td>string</td>
<td></td>
<td>A simple indicator of whether this is an "empty" granule with no data from the instrument. "TRUE" or "FALSE".</td>
</tr>
</tbody>
</table>

A full definition of the global attributes can be found in Appendix B: CDL File Definition.

Table 3.2.2 Global Attributes
<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Description</th>
<th>Heritage</th>
</tr>
</thead>
<tbody>
<tr>
<td>naming_authority</td>
<td>string</td>
<td>The organization that provides the initial id (see above) for the dataset. The naming authority should be uniquely specified by this attribute. We recommend using reverse-DNS naming for the naming authority; URLs are also acceptable. Example: 'edu.ucar.unidata'.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>history</td>
<td>string</td>
<td>Provides an audit trail for modifications to the original data. This attribute is also in the NetCDF Users Guide: 'This is a character array with a line for each invocation of a program that has modified the dataset. Well-behaved generic netCDF applications should append a line containing: date, time of day, user name, program name and command arguments.' To include a more complete description you can append a reference to an ISO Lineage entity; see NOAA EDM ISO Lineage guidance.</td>
<td>CF, ACDD Recommended</td>
</tr>
<tr>
<td>source</td>
<td>string</td>
<td>The method of production of the original data. If it was model-generated, source should name the model and its version. If it is observational, source should characterize it. This attribute is defined in the CF Conventions. Examples: 'temperature from CTD #1234'; 'world model v.0.1'.</td>
<td>CF, ACDD Recommended</td>
</tr>
<tr>
<td>processing_level</td>
<td>string</td>
<td>A textual description of the processing (or quality control) level of the data.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>product_name_type_id</td>
<td>string</td>
<td>Product name as it appears in product_name (L1A, L1B, L2, SNO_AIRS_CrIS)</td>
<td></td>
</tr>
<tr>
<td>comment</td>
<td>string</td>
<td>Miscellaneous information about the data or methods used to produce it. Can be empty.</td>
<td>CF, ACDD Recommended</td>
</tr>
<tr>
<td>acknowledgment</td>
<td>string</td>
<td>A place to acknowledge various types of support for the project that produced this data.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>license</td>
<td>string</td>
<td>Provide the URL to a standard or specific license, enter "Freely Distributed" or "None", or describe any restrictions to data access and distribution in free text.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>standard_name_vocab</td>
<td>string</td>
<td>The name and version of the controlled vocabulary from which variable standard names are taken. (Values for any standard_name attribute must come from the CF Standard Names vocabulary for the data file or product to comply with CF.) Example: 'CF Standard Name Table v27'.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>date_created</td>
<td>string</td>
<td>The date on which this version of the data was created. (Modification of values implies a new version, hence this would be assigned the date of the most recent values modification.) Metadata changes are not considered when assigning the date_created. The ISO 8601:2004 extended date format is recommended, as described in the Attribute Content Guidance section.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>creator_name</td>
<td>string</td>
<td>The name of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>creator_email</td>
<td>string</td>
<td>The email address of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>creator_url</td>
<td>string</td>
<td>The URL of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>institution</td>
<td>string</td>
<td>Processing facility that produced this file</td>
<td>CF, ACDD Recommended</td>
</tr>
<tr>
<td>project</td>
<td>string</td>
<td>The name of the project(s) principally responsible for originating this data. Multiple projects can be separated by commas, as described under Attribute Content Guidelines. Examples: 'PATMOS-X', 'Extended Continental Shelf Project'.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>publisher_name</td>
<td>string</td>
<td>The name of the person (or other entity specified by the publisher_type attribute) responsible for publishing the data file or product to users, with its current metadata and format.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>publisher_email</td>
<td>string</td>
<td>The email address of the person (or other entity specified by the publisher_type attribute) responsible for publishing the data file or product to users, with its current metadata and format.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>publisher_url</td>
<td>string</td>
<td>The URL of the person (or other entity specified by the publisher_type attribute) responsible for publishing the data file or product to users, with its current metadata and format.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>geospatial_bounds</td>
<td>string</td>
<td>Describes the data's 2D or 3D geospatial extent in OGC's Well-Known Text (WKT) Geometry format (reference the OGC Simple Feature Access (SFA) specification). The meaning and order of values for each point's coordinates depends on the coordinate reference system (CRS). The ACDD default is 2D geometry in the EPSG:4326 coordinate reference system. The default may be overridden with geospatial_bounds_crs and geospatial_bounds_vertical_crs (see those attributes). EPSG:4326 coordinate values are latitude (decimal degrees_north) and longitude (decimal degrees_east), in that order. Longitude values in the default case are limited to the -180, 180) range. Example: 'POLYGON ((40.26 -111.29, 41.26 -111.29, 41.26 -110.29, 40.26 -110.29, 40.26 -111.29))'.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>geospatial_bounds_crs</td>
<td>string</td>
<td>The coordinate reference system (CRS) of the point coordinates in the geospatial_bounds attribute. This CRS may be 2-dimensional or 3-dimensional, but together with geospatial_bounds_vertical_crs, if that attribute is supplied, must match the dimensionality, order, and meaning of point coordinate values in the geospatial_bounds attribute. If geospatial_bounds_vertical_crs is also present then this attribute must only specify a 2D CRS. EPSG CRSs are strongly recommended. If this attribute is not specified, the CRS is assumed to be EPSG:4326. Examples: 'EPSG:4979' (the 3D WGS84 CRS), 'EPSG:4047'.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>geospatial_lat_min</td>
<td>float</td>
<td>Describes a simple lower latitude limit; may be part of a 2- or 3-dimensional bounding region. Geospatial_lat_min specifies the southernmost latitude covered by the dataset.</td>
<td>ACDD Recommended</td>
</tr>
<tr>
<td>Variable Name</td>
<td>Data Type</td>
<td>Description</td>
<td>ACDD Status</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>geospatial_lat_max</td>
<td>float</td>
<td>Describes a simple upper latitude limit; may be part of a 2- or 3-dimensional bounding region. Geospatial_lat_max specifies the northernmost latitude covered by the dataset.</td>
<td>ACDD</td>
</tr>
<tr>
<td>geospatial_lon_min</td>
<td>float</td>
<td>Describes a simple longitude limit; may be part of a 2- or 3-dimensional bounding region. geospatial_lon_min specifies the westernmost longitude covered by the dataset. See also geospatial_lon_max.</td>
<td>ACDD</td>
</tr>
<tr>
<td>geospatial_lon_max</td>
<td>float</td>
<td>Describes a simple longitude limit; may be part of a 2- or 3-dimensional bounding region. geospatial_lon_max specifies the easternmost longitude covered by the dataset. Cases where geospatial_lon_min is greater than geospatial_lon_max indicate the bounding box extends from geospatial_lon_max, through the longitude range discontinuity meridian (either the antimeridian for -180:180 values, or Prime Meridian for 0:360 values), to geospatial_lon_min; for example, geospatial_lon_min=170 and geospatial_lon_max=-175 incorporates 15 degrees of longitude (ranges 170 to 180 and -180 to -175).</td>
<td>ACDD</td>
</tr>
<tr>
<td>time_coverage_start</td>
<td>string</td>
<td>Nominal start time. Describes the time of the first data point in the data set. Use the ISO 8601:2004 date format, preferably the extended format as recommended in the Attribute Content Guidance section.</td>
<td>ACDD</td>
</tr>
<tr>
<td>time_of_first_valid_obs</td>
<td>string</td>
<td>Describes the time of the first valid data point in the data set. Use the ISO 8601:2004 date extended format.</td>
<td></td>
</tr>
<tr>
<td>time_coverage_mid</td>
<td>string</td>
<td>Describes the midpoint between the nominal start and end times. Use the ISO 8601:2004 date format, preferably the extended format as recommended in the Attribute Content Guidance section.</td>
<td></td>
</tr>
<tr>
<td>time_coverage_end</td>
<td>string</td>
<td>Nominal end time. Describes the time of the last data point in the data set. Use ISO 8601:2004 date format, preferably the extended format as recommended in the Attribute Content Guidance section.</td>
<td>ACDD</td>
</tr>
<tr>
<td>time_of_last_valid_obs</td>
<td>string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time_coverage_duration</td>
<td>string</td>
<td>Describes the duration of the data set. Use ISO 8601:2004 duration format, preferably the extended format as recommended in the Attribute Content Guidance section.</td>
<td>ACDD</td>
</tr>
<tr>
<td>product_name_duration</td>
<td>string</td>
<td>Product duration as it appears in product_name (m06 means six minutes)</td>
<td></td>
</tr>
<tr>
<td>creator_type</td>
<td>string</td>
<td>Specifies type of creator with one of the following: 'person', 'group', 'institution', or 'position'. If this attribute is not specified, the creator is assumed to be a person.</td>
<td>ACDD</td>
</tr>
<tr>
<td>attribute</td>
<td>type</td>
<td>description</td>
<td>standard</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>creator_institution</td>
<td>string</td>
<td>The institution of the creator; should uniquely identify the creator's institution. This attribute's value should be specified even if it matches the value of publisher_institution, or if creator_type is institution.</td>
<td>ACDD Suggested</td>
</tr>
<tr>
<td>product_version</td>
<td>string</td>
<td>Version identifier of the data file or product as assigned by the data creator. For example, a new algorithm or methodology could result in a new product_version.</td>
<td>ACDD Suggested, (ECS versionid)</td>
</tr>
<tr>
<td>keywords_vocabulary</td>
<td>string</td>
<td>If you are using a controlled vocabulary for the words/phrases in your "keywords" attribute, this is the unique name or identifier of the vocabulary from which keywords are taken. If more than one keyword vocabulary is used, each may be presented with a prefix and a following comma, so that keywords may optionally be prefixed with the controlled vocabulary key. Example: 'GCMD:GCMD Keywords, CF:NetCDF COARDS Climate and Forecast Standard Names'.</td>
<td>ACDD Suggested</td>
</tr>
<tr>
<td>platform</td>
<td>string</td>
<td>Name of the platform(s) that supported the sensor data used to create this data set or product. Platforms can be of any type, including satellite, ship, station, aircraft or other. Indicate controlled vocabulary used in platform_vocabulary.</td>
<td>ACDD Suggested</td>
</tr>
<tr>
<td>platform_vocabulary</td>
<td>string</td>
<td>Controlled vocabulary for the names used in the "platform" attribute.</td>
<td>ACDD Suggested</td>
</tr>
<tr>
<td>product_name_platform</td>
<td>string</td>
<td>Platform name as it appears in product_name</td>
<td></td>
</tr>
<tr>
<td>instrument</td>
<td>string</td>
<td>Name of the contributing instrument(s) or sensor(s) used to create this data set or product. Indicate controlled vocabulary used in instrument_vocabulary.</td>
<td>ACDD Suggested</td>
</tr>
<tr>
<td>instrument_vocabulary</td>
<td>string</td>
<td>Controlled vocabulary for the names used in the "instrument" attribute.</td>
<td>ACDD Suggested</td>
</tr>
<tr>
<td>product_name_instrument</td>
<td>string</td>
<td>Instrument name as it appears in product_name</td>
<td></td>
</tr>
<tr>
<td>product_name</td>
<td>string</td>
<td>Canonical fully qualified product name (official file name)</td>
<td>ECS LocalGranuleID</td>
</tr>
<tr>
<td>product_name_variant</td>
<td>string</td>
<td>Processing variant identifier as it appears in product_name. 'std' (shorthand for 'standard') is to be the default and should be what is seen in all public products.</td>
<td></td>
</tr>
<tr>
<td>product_name_version</td>
<td>string</td>
<td>Version number as it appears in product_name (v01_00_00)</td>
<td></td>
</tr>
<tr>
<td>product_name_producer</td>
<td>string</td>
<td>Production facility as it appears in product_name (single character) 'T' is the default, for unofficial local test products</td>
<td></td>
</tr>
<tr>
<td>product_name_timestamp</td>
<td>string</td>
<td>Processing timestamp as it appears in product_name (ymmdddhhmms)</td>
<td></td>
</tr>
<tr>
<td>product_name_extension</td>
<td>string</td>
<td>File extension as it appears in product_name (typically nc)</td>
<td></td>
</tr>
<tr>
<td>granule_number</td>
<td>ushort</td>
<td>granule number of day (1-240)</td>
<td>AIRS</td>
</tr>
<tr>
<td>variable_name</td>
<td>type</td>
<td>description</td>
<td>source</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>product_name_granule_number</td>
<td>string</td>
<td>zero-padded string for granule number of day (g001-g240)</td>
<td>AIRS</td>
</tr>
<tr>
<td>gran_id</td>
<td>string</td>
<td>Unique granule identifier yyyyymmddThhmm of granule start, including year, month, day, hour, and minute of granule start time</td>
<td>AIRS</td>
</tr>
<tr>
<td>geospatial_lat_mid</td>
<td>float</td>
<td>granule center latitude</td>
<td>AIRS LatgranuleCen</td>
</tr>
<tr>
<td>geospatial_lon_mid</td>
<td>float</td>
<td>granule center longitude</td>
<td>AIRS LonggranuleCen</td>
</tr>
<tr>
<td>featureType</td>
<td>string</td>
<td>structure of data in file</td>
<td>CF</td>
</tr>
<tr>
<td>data_structure</td>
<td>string</td>
<td>a character string indicating the internal organization of the data with currently allowed values of 'grid', 'station', 'trajectory', or 'swath'. The 'structure' here generally describes the horizontal structure and in all cases data may also be functions, for example, of a vertical coordinate and/or time. (If using CMOR pass this in a call to cmor_set_cur_dataset_attribute.)</td>
<td>CMIP5/CMOR</td>
</tr>
<tr>
<td>cdm_data_type</td>
<td>string</td>
<td>The data type, as derived from Unidata's Common Data Model Scientific Data types and understood by THREDDS. (This is a THREDDS "dataType", and is different from the CF NetCDF attribute 'featureType', which indicates a Discrete Sampling Geometry file in CF.)</td>
<td>ACDD Suggested</td>
</tr>
<tr>
<td>identifier_product_doi_authority</td>
<td>string</td>
<td>digital signature source</td>
<td>AIRS</td>
</tr>
<tr>
<td>algorithm_version</td>
<td>string</td>
<td>The version of the algorithm in whatever format is selected by the developers. Versions from multiple sub-algorithms may be concatenated with semicolon separators. (ex: 'CCAST 4.2; BB emis from MIT 2016-04-01')</td>
<td></td>
</tr>
<tr>
<td>production_host</td>
<td>string</td>
<td>Identifying information about the host computer for this run. (Output of linux "uname -a" command.)</td>
<td></td>
</tr>
<tr>
<td>format_version</td>
<td>string</td>
<td>Format version.</td>
<td></td>
</tr>
<tr>
<td>input_file_names</td>
<td>string</td>
<td>Semicolon-separated list of names or unique identifiers of files that were used to make this product. There will always be one space after each semicolon. There is no final semicolon.</td>
<td>ECS InputPointer; ISO Source Citation</td>
</tr>
<tr>
<td>input_file_types</td>
<td>string</td>
<td>Semicolon-separated list of tags giving the role of each input file in input_file_names. There will always be one space after each semicolon. There is no final semicolon.</td>
<td>ISO Source Description</td>
</tr>
<tr>
<td>input_file_dates</td>
<td>string</td>
<td>Semicolon-separated list of creation dates for each input file in input_file_names. There will always be one space after each semicolon. There is no final semicolon.</td>
<td>ISO Source Creation Date</td>
</tr>
<tr>
<td>Variable</td>
<td>Type</td>
<td>Description</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>orbitDirection</td>
<td>string</td>
<td>Orbit is ascending and/or descending. Values are "Ascending" or "Descending" if the entire granule fits that description. "NorthPole" and "SouthPole" are used for polar-crossing granules. "NA" is used when a determination cannot be made.</td>
<td>SMAP uses this attribute name but only asc/desc because files are half orbits. The values used here are similar to AIRS node type.</td>
</tr>
<tr>
<td>day_night_flag</td>
<td>string</td>
<td>Data is day or night. "Day" means subsatellite point for all valid scans has solar zenith angle less than 90 degrees. "Night" means subsatellite point for all valid scans has solar zenith angle greater than 90 degrees. "Both" means the dataset contains valid observations with solar zenith angle above and below 90 degrees. "NA" means a value could not be determined.</td>
<td>AIRS DayNightFlag</td>
</tr>
<tr>
<td>AutomaticQualityFlag</td>
<td>string</td>
<td>"Passed": the granule contains a non-degraded calibrated brightness temperature or radiance for at least one channel in a geolocated FOV. "Suspect": the granule does not qualify as "Passed" but contains a (possibly degraded) calibrated brightness temperature or radiance for at least one channel (possibly without associated geolocation). "Failed": the granule contains no calibrated brightness temperatures/radiances.</td>
<td>ECS. AIRS called it AutomaticQA Flag in HDF attributes but AutomaticQualityFlag in metadata.</td>
</tr>
<tr>
<td>qa_pct_data_missing</td>
<td>float</td>
<td>Percentage of expected observations that are missing.</td>
<td>ECS, maps to (part of) ISO 19115 Completeness Commission</td>
</tr>
<tr>
<td>qa_pct_data_geo</td>
<td>float</td>
<td>Percentage of expected observations that are successfully geolocated.</td>
<td>maps to (part of) ISO 19115 Completeness Commission</td>
</tr>
<tr>
<td>qa_pct_data_sci_mode</td>
<td>float</td>
<td>Percentage of expected observations that were taken while the instrument was in science mode and are successfully geolocated.</td>
<td>maps to (part of) ISO 19115 Completeness Commission</td>
</tr>
<tr>
<td>qa_no_data</td>
<td>string</td>
<td>A simple indicator of whether this is an "empty" granule with no data from the instrument. "TRUE" or "FALSE".</td>
<td></td>
</tr>
</tbody>
</table>
3.3 Variable Attributes

Each variable has its own associated attributes. Variables attributes are a CF standard and are used to describe the variable in full detail to properly interpret its value.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Relevant standard(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>units</td>
<td>CF, UDUNITS</td>
<td>units, for variables that represent physical quantities</td>
</tr>
<tr>
<td>_FillValue</td>
<td>CF, NetCDF</td>
<td>a single sentinel value indicating the data point contains fill instead of valid data</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF</td>
<td>standard name from the CF standard name table, if one exists for the quantity being represented</td>
</tr>
<tr>
<td>long_name</td>
<td>CF</td>
<td>a longer name describing the quantity being represented, suitable for a plot title</td>
</tr>
<tr>
<td>valid_range</td>
<td>CF</td>
<td>a pair of values indicating the minimum and maximum values to be considered valid</td>
</tr>
<tr>
<td>coordinates</td>
<td>CF</td>
<td>a space-separated list of the names of other variables that are coordinates for this variable</td>
</tr>
<tr>
<td>description</td>
<td></td>
<td>a longer description of the quantity being represented</td>
</tr>
<tr>
<td>coverage_content_type</td>
<td>ACDD, ISO 19115-1</td>
<td>indicates the source of the data</td>
</tr>
<tr>
<td>ancillary_variables</td>
<td>CF</td>
<td>a space-separated list of the names of other variables that contain information about this variable</td>
</tr>
<tr>
<td>bounds</td>
<td>CF</td>
<td>defines the extent, for cell variables</td>
</tr>
<tr>
<td>cell_methods</td>
<td>CF</td>
<td>describes statistical methods used to derive data, for cell variables</td>
</tr>
<tr>
<td>flag_values</td>
<td>CF</td>
<td>a comma-separated list of flag values, for variables that represent flags</td>
</tr>
<tr>
<td>flag_meanings</td>
<td>CF</td>
<td>a space separated list of the meanings of each flag value, for variables that represent flags</td>
</tr>
<tr>
<td>flag_masks</td>
<td>CF</td>
<td>a comma-separated list of flag masks, for variables that represent flags. If this attribute is present, the basic rule is “apply the flag mask and if you get the flag value, it means the flag meaning”</td>
</tr>
</tbody>
</table>
3.4 Geolocation

Key geophysical dimensions are spacecraft position and altitude.

<table>
<thead>
<tr>
<th>Table 3.4.1 Geolocation Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension name</td>
</tr>
<tr>
<td>atrack</td>
</tr>
<tr>
<td>xtrack</td>
</tr>
</tbody>
</table>

And the key geolocation variables are:

<table>
<thead>
<tr>
<th>Table 3.4.2 Geolocation Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>lat</td>
</tr>
<tr>
<td>lon</td>
</tr>
<tr>
<td>obs_time_tai</td>
</tr>
<tr>
<td>obs_time_utc</td>
</tr>
</tbody>
</table>

3.5 Key Science Data Fields

Key science data fields and the aux group and their dimensions are defined below.

<table>
<thead>
<tr>
<th>Table 3.5.1 Science Data Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>antenna_temp</td>
</tr>
<tr>
<td>cold_nedt</td>
</tr>
</tbody>
</table>
The aux group is not readily used by the wider user community but is provided here for completeness.

Table 3.5.2 Aux Group

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Dimension</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>offset</td>
<td>float</td>
<td>atrack, channel</td>
<td>Kelvin</td>
<td>Offset used in calibrating earth scene brightness temps</td>
</tr>
<tr>
<td>gain</td>
<td>float</td>
<td>atrack, channel</td>
<td>Count/Kelvin</td>
<td>Gain factor used in calibrating earth scene brightness temps.</td>
</tr>
<tr>
<td>nonlin</td>
<td>float</td>
<td>atrack, xtrack, channel</td>
<td>Kelvin</td>
<td>Nonlinearity correction used in calibrating earth scene brightness temps.</td>
</tr>
<tr>
<td>cold_temp</td>
<td>float</td>
<td>atrack, channel</td>
<td>Kelvin</td>
<td>Effective temperature of cold calibration view (space) (Tcc)";</td>
</tr>
<tr>
<td>warm_temp</td>
<td>float</td>
<td>atrack, channel</td>
<td>Kelvin</td>
<td>Effective temperature of warm calibration view (black body) (Twc)";</td>
</tr>
</tbody>
</table>

3.6 Missing Data / Fill Values

On occasion, there will be data that is missing for whatever reason. In the situation where there are incomplete granules within the 6-minute product granule, the missing data will be filled with a ‘Fill Values’. The fill value is indicated by the attribute ‘_FillValue’. The fill value will exist in the same location the missing data would exist. This will preserve the shape of the 6-minute granule. Should the data for an entire 6-minute granule be missing, a granule will still be produced and will contain all fill values. In other words, a full fill-value granule will be produced. With this in mind, it is advised to check the data for fill values before it is used. The fill values are listed in the table below.
4.0 Options for Reading the Data

The ATMS L1B files are written in NetCDF4/HDF5. Because NetCDF4 builds upon the classic NetCDF data model using HDF5 as the storage layer, a user of the data product can take full advantage of tools and libraries readily available to access the data.

Every NetCDF4 file is considered an HDF5 file, however, not every HDF5 file is necessarily a NetCDF4 file. A limited subset of the HDF5 data model and file format features are used in NetCDF4 files. Conformance to the earlier mentioned CF & ACDD standards allows for users to take advantage of most NetCDF interfaces.

Tools and libraries for reading NetCDF4 as well as a NetCDF Users’ Guide are written and maintained by Unidata and can be found online at:

http://www.unidata.ucar.edu/software/netcdf/

There are a number of interfaces available for reading NetCDF for different programming languages including: C/C++, Fortran, Matlab, IDL, Python and Perl.

Additionally, but can also be accessed with HDF5 tools and libraries available at:

https://www.hdfgroup.org/products/hdf5_tools/

5.0 Data Services

The ATMS Level 1B products are available to the user community via the Goddard Distributed Active Archive Center (GDAAC).

https://disc.gsfc.nasa.gov/datasets/SNPPATMSL1B_V1/summary

The ATMS Level 1A products are not made publicly available. No other Data Services are provided for these products.
Appendix A: `calib_degraded` Flag

<table>
<thead>
<tr>
<th>Flag</th>
<th>Bin index</th>
<th>Num bits</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>reserved</td>
<td>28-32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>sv4_moon_unknown</td>
<td>27</td>
<td>1</td>
<td>Missing moon angle for this scan's space view #4. Lunar intrusion status is unknown.</td>
</tr>
<tr>
<td>sv3_moon_unknown</td>
<td>26</td>
<td>1</td>
<td>Missing moon angle for this scan's space view #3. Lunar intrusion status is unknown.</td>
</tr>
<tr>
<td>sv2_moon_unknown</td>
<td>25</td>
<td>1</td>
<td>Missing moon angle for this scan's space view #2. Lunar intrusion status is unknown.</td>
</tr>
<tr>
<td>sv1_moon_unknown</td>
<td>24</td>
<td>1</td>
<td>Missing moon angle for this scan's space view #1. Lunar intrusion status is unknown.</td>
</tr>
<tr>
<td>sv4_bad</td>
<td>23</td>
<td>1</td>
<td>This scan's space view #4 not used because of lunar intrusion or other problem. A scan-specific calibration may still be calculated using space views from neighboring views and scans.</td>
</tr>
<tr>
<td>sv3_bad</td>
<td>22</td>
<td>1</td>
<td>This scan's space view #3 not used because of lunar intrusion or other problem. A scan-specific calibration may still be calculated using space views from neighboring views and scans.</td>
</tr>
<tr>
<td>sv2_bad</td>
<td>21</td>
<td>1</td>
<td>This scan's space view #2 not used because of lunar intrusion or other problem. A scan-specific calibration may still be calculated using space views from neighboring views and scans.</td>
</tr>
<tr>
<td>sv1_bad</td>
<td>20</td>
<td>1</td>
<td>This scan's space view #1 not used because of lunar intrusion or other problem. A scan-specific calibration may still be calculated using space views from neighboring views and scans.</td>
</tr>
<tr>
<td>reserved</td>
<td>18 – 19</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>bb_bad</td>
<td>17</td>
<td>1</td>
<td>This scan's black body view not used. A scan-specific calibration may still be calculated using black body views from neighboring scans.</td>
</tr>
<tr>
<td>reserved</td>
<td>14 - 16</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>shelf_temp_bad</td>
<td>13</td>
<td>1</td>
<td>Insufficient valid shelf temperature values to use in a scan calibration. Fall-back constant shelf temperatures are used.</td>
</tr>
<tr>
<td>space_temp_bad</td>
<td>12</td>
<td>1</td>
<td>Insufficient effective space temperature values to produce a scan-specific calibration. Scan may still be calibrated using coefficients from another scan.</td>
</tr>
<tr>
<td>bb_temp_bad</td>
<td>11</td>
<td>1</td>
<td>Insufficient valid black body temperature readings to produce a scan-specific calibration. Scan may still be calibrated using coefficients from another scan.</td>
</tr>
<tr>
<td>cold_cal_bad</td>
<td>10</td>
<td>1</td>
<td>Insufficient valid space (cold calibration) observation counts to produce a scan-specific calibration. Scan may still be calibrated using</td>
</tr>
</tbody>
</table>
Appendix B: CDL File Definition

A full data product specification is generated by using the NetCDF4 library and using the ncdump utility. This produces a CDL text file showing the full structure of the ATMS L1b datafile.

The command used to generate the CDL file is: ncdump -h <filename>.nc

```verbatim
netcdf l1b_atms {

dimensions:
    spatial = 3;  // directions: x, y, z
    fov_poly = 8;  // lat/lon points defining the ploygon bounding an fov
    (anticlockwise as viewed from above)
    utc_tuple = 8;  // parts of UTC time
    attitude = 3;  // roll, pitch, yaw
    atrack = 135;  // along-track spatial dimension
    xtrack = 96;  // cross-track spatial dimension
    channel = 22;  // channel number
    band = 5;  // Microwave bands
    spacextrack = 4;  // space view

// global attributes:
    string :keywords="EARTH SCIENCE > SPECTRAL/ENGINEERING > MICROWAVE > ANTENNA TEMPERATURE";  // A comma-separated list of key words and/or phrases. Keywords may be common words or phrases, terms from a controlled vocabulary (GCMD is often used), or URIs for terms from a controlled vocabulary (see also "keywords_vocabulary" attribute).
    string :Conventions="CF-1.6, ACDD-1.3";
    string :naming_authority="Unassigned";  // In final published products this is expected to be http://dx.doi.org/; The organization that provides the initial id (see above) for the dataset. The naming authority should be uniquely specified by this attribute. We recommend using reverse-DNS naming for the naming authority; URIs are also acceptable. Example: 'edu.ucar.unidata'.
    string :history="";  // Requirement against executable that writes the NetCDF. Value will be appended to and not overwritten.; Provides an audit trail for modifications to the original data. This attribute is also in the NetCDF Users Guide: 'This is a character array with a line for each invocation of a program that has modified the dataset. Well-behaved generic netCDF applications should append a line containing: date, time of day, user name, program name and command arguments.' To include a more complete description you can append a reference to an ISO Lineage entity; see NOAA EDM ISO Lineage guidance.
    string :source="ATMS instrument telemetry";  // The method of production of the original data. If it was model-generated, source should name the model and its version. If it is observational, source should characterize it. This attribute is
```
defined in the CF Conventions. Examples: 'temperature from CTD #1234'; 'world model v.0.1'.

string :processing_level="1B"; // A textual description of the processing (or quality control) level of the data.
string :product_name_type_id="L1B"; // Product name as it appears in product_name (L1A, L1B, L2, SNO_AIRS_CrIS)
string :comment=""; // Currently not intended to be used. Miscellaneous information about the data or methods used to produce it. Can be empty.
string :acknowledgment="Support for this research was provided by NASA."; // A place to acknowledge various types of support for the project that produced this data.
string :license="Limited to Sounder SIPS affiliates"; // Provide the URL to a standard or specific license, enter "Freely Distributed" or "None", or describe any restrictions to data access and distribution in free text.
string :standard_name_vocabulary="CF Standard Name Table v28"; // The name and version of the controlled vocabulary from which variable standard names are taken. (Values for any standard_name attribute must come from the CF Standard Names vocabulary for the data file or product to comply with CF.) Example: 'CF Standard Name Table v27'.
string :date_created="Unassigned"; // PGE responsibility; The date on which this version of the data was created. (Modification of values implies a new version, hence this would be assigned the date of the most recent values modification.) Metadata changes are not considered when assigning the date_created. The ISO 8601:2004 extended date format is recommended, as described in the Attribute Content Guidance section.
string :creator_name="Unassigned"; // The name of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.
string :creator_email="Unassigned"; // The email address of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.
string :creator_url="Unassigned"; // The URL of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.
string :institution="Unassigned"; // Processing facility that produced this file
string :project="Sounder SIPS"; // The name of the project(s) principally responsible for originating this data. Multiple projects can be separated by commas, as described under Attribute Content Guidelines. Examples: 'PATMOS-X', 'Extended Continental Shelf Project'.
string :product_name_project="SNDR"; // The name of the project as it appears in the file name. 'SNDR' for all Sounder SIPS products, even AIRS products.
string :publisher_name="Unassigned"; // The name of the person (or other entity specified by the publisher_type attribute) responsible for publishing the data file or product to users, with its current metadata and format.
string :publisher_email="Unassigned"; // The email address of the person (or other entity specified by the publisher_type attribute) responsible for publishing the data file or product to users, with its current metadata and format.
string :publisher_url="Unassigned"; // The URL of the person (or other entity specified by the publisher_type attribute) responsible for publishing the data file or product to users, with its current metadata and format.
string :geospatial_bounds=""; // Will use the POLYGON as shown in the description. The example is clockwise as viewed from above, but WKT spec at https://en.wikipedia.org/wiki/Well-known_text says it should be counterclockwise. We'll go counterclockwise. The last point must repeat the first point to provide closure. L1A PGE geolocation fills in and later PGEs copy. Describes the data's 2D or 3D geospatial extent in OGC's Well-Known Text (WKT) Geometry format (reference the OGC Simple Feature Access (SFA) specification). The meaning and order of values for each point's coordinates depends on the coordinate reference system (CRS). The ACDD default is 2D geometry in the EPSG:4326 coordinate reference system. The default may be overridden with geospatial_bounds_crs and geospatial_bounds_vertical_crs (see those attributes). EPSG:4326 coordinate values are latitude (decimal degrees north) and longitude (decimal degrees east), in that order. Longitude values in the default case
are limited to the -180, 180) range. Example: 'POLYGON ((40.26 -111.29, 41.26 -111.29, 41.26 -110.29, 40.26 -110.29, 40.26 -111.29))'.

```plaintext
string :geospatial_bounds_crs="EPSG:4326"; // The coordinate reference system (CRS) of the point coordinates in the geospatial_bounds attribute. This CRS may be 2-dimensional or 3-dimensional, but together with geospatial_bounds_vertical_crs, if that attribute is supplied, must match the dimensionality, order, and meaning of point coordinate values in the geospatial_bounds attribute. If geospatial_bounds_vertical_crs is also present then this attribute must only specify a 2D CRS. EPSG CRSs are strongly recommended. If this attribute is not specified, the CRS is assumed to be EPSG:4326. Examples: 'EPSG:4979' (the 3D WGS84 CRS), 'EPSG:4047'.
```

```plaintext
float :geospatial_lat_min=9.9692099683868690e+36f; // PGE responsibility; Describes a simple lower latitude limit; may be part of a 2- or 3-dimensional bounding region. Geospatial_lat_min specifies the southernmost latitude covered by the dataset.
```

```plaintext
float :geospatial_lat_max=9.9692099683868690e+36f; // PGE responsibility; Describes a simple upper latitude limit; may be part of a 2- or 3-dimensional bounding region. Geospatial_lat_max specifies the northernmost latitude covered by the dataset.
```

```plaintext
float :geospatial_lon_min=9.9692099683868690e+36f; // PGE responsibility; Describes a simple longitude limit; may be part of a 2- or 3-dimensional bounding region. geospatial_lon_min specifications the westernmost longitude covered by the dataset. See also geospatial_lon_max.
```

```plaintext
float :geospatial_lon_max=9.9692099683868690e+36f; // PGE responsibility; Describes a simple longitude limit; may be part of a 2- or 3-dimensional bounding region. geospatial_lon_max specifies the easternmost longitude covered by the dataset. Cases where geospatial_lon_min is greater than geospatial_lon_max indicate the bounding box extends from geospatial_lon_min, through the longitude range discontinuity meridian (either the antimeridian for -180:180 values, or Prime Meridian for 0:360 values), to geospatial_lon_min; for example, geospatial_lon_min=-170 and geospatial_lon_max=-175 incorporates 15 degrees of longitude (ranges 170 to 180 and -180 to -175).
```

```plaintext
string :time_coverage_start=""; // We use nominal limits, not the actual timestamp of the first data point. (seconds always = 00.00") Nominal start time. Describes the time of the first data point in the data set. Use the ISO 8601:2004 date format, preferably the extended format as recommended in the Attribute Content Guidance section.
```

```plaintext
string :time_of_first_valid_obs=""; // This is a companion to time_coverage_start. But where time_coverage_start gives the nominal limit, this gives the actual timestamp of the first valid observation included in the product.; Describes the time of the first valid data point in the data set. Use the ISO 8601:2004 date format, preferably the extended format as recommended in the Attribute Content Guidance section.
```

```plaintext
string :time_coverage_mid=""; // We use nominal limits, not the actual timestamps of the first and last data points. (seconds always = 00.00") Describes the midpoint between the nominal start and end times. Use the ISO 8601:2004 date format, preferably the extended format as recommended in the Attribute Content Guidance section.
```

```plaintext
string :time_coverage_end=""; // We use nominal limits, not the actual timestamp of the first data point. (seconds always = 00.00") This value may be 1 second wrong in case of a leapsecond.; Nominal end time. Describes the time of the last data point in the data set. Use ISO 8601:2004 date format, preferably the extended format as recommended in the Attribute Content Guidance section.
```

```plaintext
string :time_of_last_valid_obs=""; // This is a companion to time_coverage_end. But where time_coverage_end gives the nominal limit, this gives the actual timestamp of the last valid observation included in the product. Note that this can be a few seconds after the nominal end time given in time_coverage_end.;
```

```plaintext
string :time_coverage_duration="0000-00-00T00:06:00"; // This value may technically be 1 second wrong in cases with leapseconds but the value will not change.; Describes the duration of the data set. Use ISO 8601:2004 duration format, preferably the extended format as recommended in the Attribute Content Guidance section.
```

```plaintext
string :product_name_duration="m06"; // Product duration as it appears in product_name (m06 means six minutes)
```

```plaintext
string :creator_type="institution"; // Specifies type of creator with one of the following: 'person', 'group', 'institution', or 'position'. If this attribute is not specified, the creator is assumed to be a person.
```
string :creator_institution="Jet Propulsion Laboratory -- California Institute of Technology"; // The institution of the creator; should uniquely identify the creator's institution. This attribute's value should be specified even if it matches the value of publisher_institution, or if creator_type is institution.

string :product_version="v01.00.00"; // product_version is the version assigned to the build of the overall SIPS system. It will increment for all PGEs each build, even if not all PGEs have any changes. Always of the form 'vxx.yy.zz', with 2-digit major, minor, and revision subfields. (ex 'v01.00.12'.) Major version will correspond to DISC collection number.; Version identifier of the data file or product as assigned by the data creator. For example, a new algorithm or methodology could result in a new product_version.

string :keywords_vocabulary="GCMD:GCMD Keywords"; // If you are using a controlled vocabulary for the words/phrases in your "keywords" attribute, this is the unique name or identifier of the vocabulary from which keywords are taken. If more than one keyword vocabulary is used, each may be presented with a prefix and a following comma, so that keywords may optionally be prefixed with the controlled vocabulary key. Example: 'GCMD:GCMD Keywords, CF:NetCDF COARDS Climate and Forecast Standard Names'.

string :platform="SUOMI-NPP > Suomi National Polar-orbiting Partnership"; // Name of the platform(s) that supported the sensor data used to create this data set or product. Platforms can be of any type, including satellite, ship, station, aircraft or other. Indicate controlled vocabulary used in platform_vocabulary.

string :platform_vocabulary="GCMD:GCMD Keywords"; // Controlled vocabulary for the names used in the "platform" attribute.

string :product_name_platform="SNPP"; // Platform name as it appears in product_name

string :instrument="ATMS > Advanced Technology Microwave Sounder"; // Name of the contributing instrument(s) or sensor(s) used to create this data set or product. Indicate controlled vocabulary used in instrument_vocabulary.

string :instrument_vocabulary="GCMD:GCMD Keywords"; // Controlled vocabulary for the names used in the "instrument" attribute.

string :product_name_instr="ATMS"; // Instrument name as it appears in product_name

string :product_name=""; // PGE responsibility; Canonical fully qualified product name (official file name)

string :product_name_variant="std"; // PGE Responsibility ('std' should be the default); Processing variant identifier as it appears in product_name. 'std' (shorthand for 'standard') is to be the default and should be what is seen in all public products.

string :product_name_version="vxx_xx_xx"; // product_name_version is a simplified form of product_version that goes into the file name. It substitutes underscores for dots and excludes the revision subfield. (ex 'v01_00' for distribution; 'v01.00.12' for local). Note this string will be flowed into the PGEs through the config files in order to provide control of how the filenames appear across the entire ensemble of data products.; Version number as it appears in product_name (v01_00_00)

string :product_name_producer="T"; // PGE Responsibility; Production facility as it appears in product_name (single character) 'T' is the default, for unofficial local test products

string :product_name_timestamp="yymmddThhmm"; // PGE responsibility; Processing timestamp as it appears in product_name (yymmddHhmmss)

string :product_name_extension="nc"; // File extension as it appears in product_name (typically nc)

ushort :granule_number=0.0; // PGE responsibility. L1A fills in and later PGEs copy.; granule number of day (1-240)

string :product_name_granule_number="g000"; // PGE responsibility. L1A fills in and later PGEs copy.; zero-padded string for granule number of day (g001-g240)

string :gran_id="yymmddThhmm"; // PGE responsibility. L1A fills in and later PGEs copy.; Unique granule identifier yymmddThhmm of granule start, including year, month, day, hour, and minute of granule start time

float :geospatial_lat_mid=9.9692099683868690e+36f; // PGE responsibility. L1A fills in and later PGEs copy.; granule center latitude
float :geospatial_lon_mid=9.96920968366690e+36f; // PGE responsibility. L1A fills in and later PGEs copy.; granule center longitude

string :featureType="point"; // should be swath but that is not permitted by the current version of CF; structure of data in file

string :data_structure="swath"; // a character string indicating the internal organization of the data with currently allowed values of 'grid', 'station', 'trajectory', or 'swath'. The 'structure' here generally describes the horizontal structure and in all cases data may also be functions, for example, of a vertical coordinate and/or time. (If using CMOR pass this in a call to cmor_set_cur_dataset_attribute.)

string :cdm_data_type="Swath"; // The data type, as derived from Unidata's Common Data Model Scientific Data types and understood by THREDDS. (This is a THREDDS "dataType", and is different from the CF NetCDF attribute 'featureType', which indicates a Discrete Sampling Geometry file in CF.)

string :identifier_product_doi_authority="Unassigned"; // probably redundant with naming_authority but retained for EOSDIS compatibility. Expected to be http://dx.doi.org/ in final published products.; digital signature source

string :algorithm_version=""; // It is set by the PGE developers in a config file or source code they control, so that it can be set by the PGE at run time. If the PGE can switch different algorithms at runtime, the selected algorithm should be reflected here.; The version of the algorithm in whatever format is selected by the developers. Versions from multiple sub-algorithms may be concatenated with semicolon separators. (ex: 'CCAST 4.2; BB emis from MIT 2016-04-01')

string :production_host=""; // PGE responsibility (for science code this string will be passed in); Identifying information about the host computer for this run. (Output of linux "uname -a" command.)

string :format_version="v01.04.04"; // format_version relates to the spreadsheet. For public products it is of the form 'vxx.yy.zz'. For local runs from a local version of the spreadsheet it will add the suffix 'Untrusted': 'vxx.yy.zz.Untrusted'. Developers update it to reflect the level of changes, but always retain the 'Untrusted' suffix.; Format version.

string :input_file_names=""; // File names only: not path+filename; Semicolon-separated list of names or unique identifiers of files that were used to make this product. There will always be one space after each semicolon. There is no final semicolon.

string :input_file_types=""; // These are human-readable tokens agreed by the team. A downstream process will populate metadata by keying off a list of expected values. Values include: ATMS_L1A, ATMS_L1B_AlgParam, ATMS_L1B_Template; Semicolon-separated list of tags giving the role of each input file in input_file_names. There will always be one space after each semicolon. There is no final semicolon.

string :input_file_dates=""; // Dates shall be formatted according to ISO 8601: YYYY-MM-DD; Semicolon-separated list of creation dates for each input file in input_file_names. There will always be one space after each semicolon. There is no final semicolon.

string :orbitDirection="NA"; // Orbit is ascending and/or descending. Values are "Ascending" or "Descending" if the entire granule fits that description. "NorthPole" and "SouthPole" are used for polar-crossing granules. "NA" is used when a determination cannot be made.

string :day_night_flag="NA"; // Data is day or night. "Day" means subsatellite point for all valid scans has solar zenith angle less than 90 degrees. "Night" means subsatellite point for all valid scans has solar zenith angle greater than 90 degrees. "Both" means the dataset contains valid observations with solar zenith angle above and below 90 degrees. "NA" means a value could not be determined.

string :AutomaticQualityFlag="Missing"; // Similar to ECS field but ECS field is per observed parameter and here we give a single value. "Missing" is a special case when there is no downlinked data. These files are internal placeholders, never visible to the public.; "Passed": the granule contains a non-degraded calibrated brightness temperature or radiance for at least one channel in a geolocated FOV; "Suspect": the granule does not qualify as "Passed" but contains a (possibly degraded) calibrated brightness temperature or radiance for at least one channel (possibly without associated geolocation); "Failed": the granule contains no calibrated brightness temperatures/radiances.
float : qa_pct_data_missing = 100.0; // Similar to ECS field QAPercentMissingData but ECS field is per observed parameter and here we give a single value.; Percentage of expected observations that are missing.
float : qa_pct_data_geo = 0.0; // Percentage of expected observations that were taken while the instrument was in science mode and are successfully geolocated.
float : qa_pct_data_sci_mode = 0.0; // Percentage of expected observations that were taken while the instrument was in science mode.
string : qa_no_data = "0"; // Processing systems may delete empty files or may propagate them as placeholders. Empty files should not be seen by the public.; A simple indicator of whether this is an "empty" granule with no data from the instrument. "TRUE" or "FALSE".
string : title = "SNPP ATMS Level-1B"; // a succinct description of what is in the dataset. (= ECS long name)
string : summary = "The Level-1B ATMS product includes data from the ATMS instrument for one six-minute interval. Data is geolocated and calibrated to antenna temperature."; // A paragraph describing the dataset, analogous to an abstract for a paper.
string : shortname = "SNPPATMSL1B"; // ECS Short Name
string : product_group = "l1b_atms";
string : id = "Unassigned"; // DOI; An identifier for the data set, provided by and unique within its naming authority. The combination of the "naming authority" and the "id" should be globally unique, but the id can be globally unique by itself also. IDs can be URLs, URNs, DOIs, meaningful text strings, a local key, or any other unique string of characters. The id should not include white space characters.
string : identifier_product_doi = "Unassigned"; // probably redundant with id but retained for EOSDIS compatibility; digital signature
string : metadata_link = "http://disc.sci.gsfc.nasa.gov/"; // A URL that gives the location of more complete metadata. A persistent URL is recommended for this attribute.
string : references = "ATMS ATBD is in review. It will be published at http://eospso.gsfc.nasa.gov/content/algorithm-theoretical-basis-documents"; // ATDB and design documents describing processing algorithms. Can be empty.
string : contributor_name = "Jet Propulsion Laboratory: Bjorn Lambrigtsen"; // Can be a semicolon-separated list. contributor_role must then be a parallel semicolon-separated list.; The names of any individuals or institutions that contributed to the creation of this data.
string : contributor_role = "SNPP ATMS Scientist"; // See contributor_name; The roles of any individuals or institutions that contributed to the creation of this data.
variables:
string obs_id(atrack, xtrack);
string obs_id:units="1";
string obs_id:long_name="earth view observation id";
string obs_id:description="unique earth view observation identifier: yyyymmddThhmm.aaaExx. Includes gran_id plus 3-digit along-track index (1-135) and 2-digit cross-track index (1-96).";
string obs_id:coverage_content_type="referenceInformation";
ubyte instrument_state(atrack, xtrack);
string instrument_state:units="1";
string instrument_state:long_name="instrument state";
string instrument_state:coordinates="lon lat";
string instrument_state:description="instrument/data state: 0/'Process' - Data is usable for science; 1/'Special' - Observations are valid but instrument is not configured for science data (ex: stare mode); 2/'Erroneous' - Data is not usable (ex: checksum error); 3/'Missing' - No data was received.";
ubyte instrument_state:_FillValue=255ub;
string instrument_state:coverage_content_type="qualityInformation";
string instrument_state:flag_meanings="Process Special Erroneous Missing";
ubyte instrument_state:flag_values=0, 1, 2, 3;
double obs_time_tai(atrack, xtrack);
 string obs_time_tai:units="seconds since 1993-01-01 00:00";
 double obs_time_tai:valid_range=-2934835217.0, 3376598409.0;
 string obs_time_tai:long_name="earth view FOV midtime";
 string obs_time_tai:standard_name="time";
 string obs_time_tai:description="earth view observation midtime for each FOV";
 double obs_time_tai:_FillValue=9.9692099683868690e+36;
 string obs_time_tai:coverage_content_type="referenceInformation";

ushort obs_time_utc(atrack, xtrack, utc_tuple);
 string obs_time_utc:units="1";
 string obs_time_utc:long_name="earth view UTC FOV time";
 string obs_time_utc:coordinates="utc_tuple_lbl";
 string obs_time_utc:description="UTC earth view observation time as an array of integers: year, month, day, hour, minute, second, millisec, microsec";
 ushort obs_time_utc:_FillValue=65535us;
 string obs_time_utc:coverage_content_type="referenceInformation";

float lat(atrack, xtrack);
 string lat:units="degrees_north";
 float lat:valid_range=-90.0, 90.0;
 string lat:long_name="latitude";
 string lat:standard_name="latitude";
 string lat:description="latitude of FOV center";
 float lat:_FillValue=9.9692099683868690e+36f;
 string lat:coverage_content_type="referenceInformation";
 string lat:bounds="lat_bnds";

float lat_geoid(atrack, xtrack);
 string lat_geoid:units="degrees_north";
 float lat_geoid:valid_range=-90.0, 90.0;
 string lat_geoid:long_name="latitude";
 string lat_geoid:standard_name="latitude";
 string lat_geoid:description="latitude of FOV center on the geoid (without terrain correction)";
 float lat_geoid:_FillValue=9.9692099683868690e+36f;
 string lat_geoid:coverage_content_type="referenceInformation";

float lon(atrack, xtrack);
 string lon:units="degrees_east";
 float lon:valid_range=-180.0, 180.0;
 string lon:long_name="longitude";
 string lon:standard_name="longitude";
 string lon:description="longitude of FOV center";
 float lon:_FillValue=9.9692099683868690e+36f;
 string lon:coverage_content_type="referenceInformation";
 string lon:bounds="lon_bnds";

float lon_geoid(atrack, xtrack);
 string lon_geoid:units="degrees_east";
 float lon_geoid:valid_range=-180.0, 180.0;
 string lon_geoid:long_name="longitude";
 string lon_geoid:standard_name="longitude";
 string lon_geoid:description="longitude of FOV center on the geoid (without terrain correction)";
 float lon_geoid:_FillValue=9.9692099683868690e+36f;
 string lon_geoid:coverage_content_type="referenceInformation";

float lat_bnds(atrack, xtrack, fov_poly);
 string lat_bnds:units="degrees_north";
 float lat_bnds:valid_range=-90.0, 90.0;
string lat_bnds:long_name="FOV boundary latitudes";
string lat_bnds:description="latitudes of points forming a polygon around the perimeter of the FOV";
float lat_bnds:_FillValue=9.9692099683868690e+36f;
string lat_bnds:coverage_content_type="referenceInformation";

float lon_bnds(atrack, xtrack, fov_poly);
string lon_bnds:units="degrees_east";
float lon_bnds:valid_range=-180.0, 180.0;
string lon_bnds:long_name="FOV boundary longitudes";
string lon_bnds:description="longitudes of points forming a polygon around the perimeter of the FOV";
float lon_bnds:_FillValue=9.9692099683868690e+36f;
string lon_bnds:coverage_content_type="referenceInformation";

float land_frac(atrack, xtrack);
string land_frac:units="1";
float land_frac:valid_range=0.0, 1.0;
string land_frac:long_name="land fraction";
string land_frac:standard_name="land_area_fraction";
string land_frac:coordinates="lon lat";
string land_frac:description="land fraction over the FOV";
float land_frac:_FillValue=9.9692099683868690e+36f;
string land_frac:coverage_content_type="referenceInformation";
string landfrac:cell_methods="area: mean (beam-weighted)";

float surf_alt(atrack, xtrack);
string surf_alt:units="m";
string surf_alt:ancillary_variables="surf_alt_sdev";
float surf_alt:valid_range=-500.0, 10000.0;
string surf_alt:long_name="surface altitude";
string surf_alt:standard_name="surface_altitude";
string surf_alt:coordinates="lon lat";
string surf_alt:description="mean surface altitude wrt earth model over the FOV";
float surf_alt:_FillValue=9.9692099683868690e+36f;
string surf_alt:coverage_content_type="referenceInformation";
string surf_alt:cell_methods="area: mean (beam-weighted)";

float surf_alt_sdev(atrack, xtrack);
string surf_alt_sdev:units="m";
float surf_alt_sdev:valid_range=0.0, 10000.0;
string surf_alt_sdev:long_name="surface altitude standard deviation";
string surf_alt_sdev:coordinates="lon lat";
string surf_alt_sdev:description="standard deviation of surface altitude within the FOV";
float surf_alt_sdev:_FillValue=9.9692099683868690e+36f;
string surf_alt_sdev:coverage_content_type="qualityInformation";
string surf_alt_sdev:cell_methods="area: standard_deviation (beam-weighted)";

float sun_glint_lat(atrack);
string sun_glint_lat:units="degrees_north";
float sun_glint_lat:valid_range=-90.0, 90.0;
string sun_glint_lat:long_name="sun glint latitude";
string sun_glint_lat:standard_name="latitude";
string sun_glint_lat:coordinates="subsatLon subsatLat";
string sun_glint_lat:description="sun glint spot latitude at scan_mid_time. Fill for night observations.";
float sun_glint_lat:_FillValue=9.9692099683868690e+36f;
string sun_glint_lat:coverage_content_type="referenceInformation";

float sun_glint_lon(atrack);
string sun_glint_lon:units="degrees_east";
float sun_glint_lon:valid_range=-180.0, 180.0;
string sun_glint_lon:long_name="sun glint longitude";
string sun_glint_lon:standard_name="longitude";
string sun_glint_lon:coordinates="subsat_lon subsat_lat";
string sun_glint_lon:description="sun glint spot longitude at scan_mid_time. Fill for night observations.";
float sun_glint_lon:_FillValue=9.9692099683868690e+36f;
string sun_glint_lon:coverage_content_type="referenceInformation";

float sol_zen(atrack, xtrack);
string sol_zen:units="degree";
float sol_zen:valid_range=0.0, 180.0;
string sol_zen:long_name="solar zenith angle";
string sol_zen:standard_name="solar_zenith_angle";
string sol_zen:coordinates="lon lat";
string sol_zen:description="solar zenith angle at the center of the spot";
float sol_zen:_FillValue=9.9692099683868690e+36f;
string sol_zen:coverage_content_type="referenceInformation";

float sol_azi(atrack, xtrack);
string sol_azi:units="degree";
float sol_azi:valid_range=0.0, 360.0;
string sol_azi:long_name="solar azimuth angle";
string sol_azi:standard_name="solar_azimuth_angle";
string sol_azi:coordinates="lon lat";
string sol_azi:description="solar azimuth angle at the center of the spot (clockwise from North)";
float sol_azi:_FillValue=9.9692099683868690e+36f;
string sol_azi:coverage_content_type="referenceInformation";

float sun_glint_dist(atrack, xtrack);
string sun_glint_dist:units="m";
float sun_glint_dist:valid_range=0.0, 30000.0;
string sun_glint_dist:long_name="sun glint distance";
string sun_glint_dist:coordinates="lon lat";
string sun_glint_dist:description="distance of sun glint spot to the center of the spot. Fill for night observations.";
float sun_glint_dist:_FillValue=9.9692099683868690e+36f;
string sun_glint_dist:coverage_content_type="referenceInformation";

float view_ang(atrack, xtrack);
string view_ang:units="degree";
float view_ang:valid_range=0.0, 180.0;
string view_ang:long_name="view angle";
string view_ang:standard_name="sensor_view_angle";
string view_ang:coordinates="lon lat";
string view_ang:description="off nadir pointing angle";
float view_ang:_FillValue=9.9692099683868690e+36f;
string view_ang:coverage_content_type="referenceInformation";

float sat_zen(atrack, xtrack);
string sat_zen:units="degree";
float sat_zen:valid_range=0.0, 180.0;
string sat_zen:long_name="satellite zenith angle";
string sat_zen:standard_name="sensor_zenith_angle";
string sat_zen:coordinates="lon lat";
string sat_zen:description="satellite zenith angle at the center of the spot";
float sat_zen:_FillValue=9.9692099683868690e+36f;
string sat_zen:coverage_content_type="referenceInformation";
float sat_azi(atrack, xtrack);
 string sat_azi:units="degree";
 float sat_azi:valid_range=0.0, 360.0;
 string sat_azi:long_name="satellite azimuth angle";
 string sat_azi:standard_name="sensor_azimuth_angle";
 string sat_azi:coordinates="lon lat";
 string sat_azi:description="satellite azimuth angle at the center of the spot (clockwise from North)";
 float sat_azi:_FillValue=9.969209683868690e+36f;
 string sat_azi:coverage_content_type="referenceInformation";

float sat_range(atrack, xtrack);
 string sat_range:units="m";
 float sat_range:valid_range=1.0e5, 1.0e7;
 string sat_range:long_name="satellite range";
 string sat_range:coordinates="lon lat";
 string sat_range:description="line of sight distance between satellite and spot center";
 float sat_range:_FillValue=9.969209683868690e+36f;
 string sat_range:coverage_content_type="referenceInformation";

ubyte asc_flag(atrack);
 string asc_flag:units="1";
 ubyte asc_flag:valid_range=0, 1;
 string asc_flag:long_name="ascending orbit flag";
 string asc_flag:coordinates="subsat_lon subsat_lat";
 string asc_flag:description="ascending orbit flag: 1 if ascending, 0 descending";
 ubyte asc_flag:_FillValue=255ub;
 string asc_flag:coverage_content_type="referenceInformation";
 string asc_flag:flag_meanings="descending ascending";
 ubyte asc_flag:flag_values=0, 1;

float subsat_lat(atrack); // standard_name platform_latitude is under review for a future CF version
 string subsat_lat:units="degrees_north";
 float subsat_lat:valid_range=-90.0, 90.0;
 string subsat_lat:long_name="sub-satellite latitude";
 string subsat_lat:standard_name="latitude";
 string subsat_lat:description="sub-satellite latitude at scan_mid_time";
 float subsat_lat:_FillValue=9.969209683868690e+36f;
 string subsat_lat:coverage_content_type="referenceInformation";

float subsat_lon(atrack); // standard_name platform_longitude is under review for a future CF version
 string subsat_lon:units="degrees_east";
 float subsat_lon:valid_range=-180.0, 180.0;
 string subsat_lon:long_name="sub-satellite longitude";
 string subsat_lon:standard_name="longitude";
 string subsat_lon:description="sub-satellite longitude at scan_mid_time";
 float subsat_lon:_FillValue=9.969209683868690e+36f;
 string subsat_lon:coverage_content_type="referenceInformation";

double scan_mid_time(atrack);
 string scan_mid_time:units="seconds since 1993-01-01 00:00";
 double scan_mid_time:valid_range=2934835217.0, 3376598409.0;
 string scan_mid_time:long_name="midscan TAI93";
 string scan_mid_time:standard_name="time";
 string scan_mid_time:coordinates="subsat_lon subsat_lat";
 string scan_mid_time:description="TAI93 at middle of earth scene scans";
 double scan_mid_time:_FillValue=9.969209683868690e+36;
```plaintext
string scan_mid_time:coverage_content_type="referenceInformation";

float sat_alt(atrack);  // standard_name platform_altitude is under review for a future CF version
    string sat_alt:units="m";
    float sat_alt:valid_range=1.0e5, 1.0e6;
    string sat_alt:long_name="satellite altitude";
    string sat_alt:standard_name="altitude";
    string sat_alt:coordinates="subsat_lon subsat_lat";
    string sat_alt:description="satellite altitude with respect to earth model at scan_mid_time";
    float sat_alt:_FillValue=9.96920968338690e+36f;
    string sat_alt:coverage_content_type="referenceInformation";

float sat_pos(atrack, spatial);
    string sat_pos:units="m";
    string sat_pos:long_name="satellite position";
    string sat_pos:coordinates="subsat_lon subsat_lat spatial_lbl";
    string sat_pos:description="satellite ECR position at scan_mid_time";
    float sat_pos:_FillValue=9.96920968338690e+36f;
    string sat_pos:coverage_content_type="referenceInformation";

float sat_vel(atrack, spatial);
    string sat_vel:units="m s^{-1}";
    string sat_vel:long_name="satellite velocity";
    string sat_vel:coordinates="subsat_lon subsat_lat spatial_lbl";
    string sat_vel:description="satellite ECR velocity at scan_mid_time";
    float sat_vel:_FillValue=9.96920968338690e+36f;
    string sat_vel:coverage_content_type="referenceInformation";

float sat_att(atrack, attitude);
    string sat_att:units="degree";
    float sat_att:valid_range=-180.0, 180.0;
    string sat_att:long_name="satellite attitude";
    string sat_att:coordinates="subsat_lon subsat_lat angular_lbl";
    string sat_att:description="satellite attitude at scan_mid_time. An orthogonal triad. First element is angle about the +x (roll) ORB axis. +x axis is positively oriented in the direction of orbital flight. Second element is angle about +y (pitch) ORB axis. +y axis is oriented normal to the orbit plane with the positive sense opposite to that of the orbit's angular momentum vector H. Third element is angle about +z (yaw) axis. +z axis is positively oriented Earthward parallel to the satellite radius vector R from the spacecraft center of mass to the center of the Earth.";
    float sat_att:_FillValue=9.96920968338690e+36f;
    string sat_att:coverage_content_type="referenceInformation";

float moon_ang(atrack, spacetrack);
    string moon_ang:units="degree";
    float moon_ang:valid_range=0.0, 180.0;
    string moon_ang:long_name="moon angle";
    string moon_ang:coordinates="subsat_lon subsat_lat";
    string moon_ang:description="angle between moon and FOV center for space view";
    float moon_ang:_FillValue=9.96920968338690e+36f;
    string moon_ang:coverage_content_type="referenceInformation";

string attitude_lbl(atitude);
    string attitude_lbl:long_name="rotational direction";
    string attitude_lbl:description="list of rotational directions (roll, pitch, yaw)";
    string attitude_lbl:coverage_content_type="auxiliaryInformation";

string spatial_lbl(spatial);
```

30
string spatial_lbl:long_name="spatial direction";
string spatial_lbl:description="list of spatial directions (X, Y, Z)"
string spatial_lbl:coverage_content_type="auxiliaryInformation"

string utc_tuple_lbl(utc_tuple);
string utc_tuple_lbl:long_name="UTC date/time parts"
string utc_tuple_lbl:description="names of the elements of UTC when it
is expressed as an array of integers
year,month,day,hour,minute,second,millisecond,microsecond"
string utc_tuple_lbl:coverage_content_type="auxiliaryInformation"

ushort geo_qual(atrack, xtrack);
string geo_qual:units="1"
string geo_qual:long_name="geolocation quality"
string geo_qual:description="Bit 2 - Failed geolocation on Earth
topographic surface
Bit 3 - Could not set FOV surface elevations and land water fraction
Bit 4 - Failed geolocation on Earth geoid
Bit 5 - Failed to set solar zenith or azimuth angles
Bit 6 - Failed to set spacecraft zenith or azimuth angles
Bit 7 - Unused (0)
Bit 8 - Failed geolocation of some bands"
ushort geo_qual:_FillValue= 65535us
string geo_qual:coverage_content_type="qualityInformation"
string geo_qual:flag_meanings="unused surface_loc DEM geoid_loc
solar_ang spacecraft_ang unused band_specific"
ushort geo_qual:flag_values=1, 2, 4, 8, 16, 32, 64, 128

float band_lat(atrack, xtrack, band);
string band_lat:units="degrees_north"
float band_lat:valid_range=-90.0, 90.0
string band_lat:long_name="band latitude"
string band_lat:standard_name="latitude"
string band_lat:description="band-specific fov center latitude"
float band_lat:_FillValue=9.9692099683868690e+36f
string band_lat:coverage_content_type="referenceInformation"
string band_lat:bounds="band_lat_bnds"

float band_lon(atrack, xtrack, band);
string band_lon:units="degrees_east"
float band_lon:valid_range=-180.0, 180.0
string band_lon:long_name="band longitude"
string band_lon:standard_name="longitude"
string band_lon:description="band-specific fov center longitude"
float band_lon:_FillValue=9.9692099683868690e+36f
string band_lon:coverage_content_type="referenceInformation"
string band_lon:bounds="band_lon_bnds"

float band_lat_bnds(atrack, xtrack, band, fov_poly);
string band_lat_bnds:units="degrees_north"
float band_lat_bnds:valid_range=-90.0, 90.0
string band_lat_bnds:long_name="band fov boundary latitudes"
string band_lat_bnds:description="latitudes of points forming a polygon
around the perimeter of the band-specific fov"
float band_lat_bnds:_FillValue=9.9692099683868690e+36f
string band_lat_bnds:coverage_content_type="referenceInformation"

float band_lon_bnds(atrack, xtrack, band, fov_poly);
string band_lon_bnds:units="degrees_east"
float band_lon_bnds:valid_range=-180.0, 180.0
string band_lon_bnds:long_name="band fov boundary longitudes"
string band_lon_bnds:description="longitudes of points forming a polygon
around the perimeter of the band-specific fov"
float band_lon_bnds:_FillValue=9.969209683868690e+36f;
string band_lon_bnds:coverage_content_type="referenceInformation";

float **band_land_frac**(atrack, xtrack, band);
string band_land_frac:units="1";
float band_land_frac:valid_range=0.0, 1.0;
string band_land_frac:long_name="band land fraction";
string band_land_frac:standard_name="land_area_fraction";
string band_land_frac:coordinates="bandlbl bandlat bandlon";
string band_land_frac:description="band-specific land fraction over the fov";
float band_land_frac:_FillValue=9.9692099683868690e+36f;
string band_land_frac:cell_methods="area: mean (beam-weighted)";
string band_land_frac:coverage_content_type="referenceInformation";

float **band_surf_alt**(atrack, xtrack, band);
string band_surf_alt:units="m";
float band_surf_alt:valid_range=-500.0, 10000.0;
string band_surf_alt:long_name="band surface altitude";
string band_surf_alt:standard_name="surface_altitude";
string band_surf_alt:coordinates="bandlbl bandlat bandlon";
string band_surf_alt:description="band-specific mean surface altitude over the fov";
float band_surf_alt:_FillValue=9.969209683868690e+36f;
string band_surf_alt:cell_methods="area: mean (beam-weighted)";
string band_surf_alt:coverage_content_type="referenceInformation";

ushort **band_geoloc_chan**(band);
string band_geoloc_chan:units="1";
ushort band_geoloc_chan:valid_range=1, 22;
string band_geoloc_chan:long_name="band geolocation channel";
string band_geoloc_chan:coordinates="badlbl";
string band_geoloc_chan:description="Channel used in determining the geolocation information for each band";
ushort band_geoloc_chan:_FillValue=65535us;
string band_geoloc_chan:coverage_content_type="referenceInformation";

float **antenna_temp**(atrack, xtrack, channel);
string antenna_temp:units="Kelvin";
float antenna_temp:valid_range=0.0, 400.0;
string antenna_temp:long_name="antenna temperature";
string antenna_temp:standard_name="brightness_temperature";
string antenna_temp:coordinates="lon lat";
string antenna_temp:description="Calibrated scene brightness temperature for each ATMS channel and beam position. This output is the Rayleigh equivalent temperature and not the Planck blackbody equivalent temperature";
float antenna_temp:_FillValue=9.969209683868690e+36f;
string antenna_temp:coverage_content_type="physicalMeasurement";

uint **calib_degraded**(atrack, channel);
string calib_degraded:units="1";
string calib_degraded:long_name="calibration degradation flags";
string calib_degraded:coordinates="subsat_lon subsat_lat";
string calib_degraded:description="(Bit 1 is most significant. It is not used because it can cause confusion when this flag is used as a signed or unsigned integer.)

Bit 1: reserved (0)
Bit 2: No usable calibration. Scan is not calibrated.
Bit 3: Calibration values used from different scan.
Bits 4-8: reserved (0)
Bit 9: Insufficient valid black body (warm calibration) observation counts to produce a scan-specific calibration. Scan may still be calibrated using coefficients from another scan.

Bit 10: Insufficient valid space (cold calibration) observation counts to produce a scan-specific calibration. Scan may still be calibrated using coefficients from another scan.

Bit 11: Insufficient valid black body temperature readings to produce a scan-specific calibration. Scan may still be calibrated using coefficients from another scan.

Bit 12: Insufficient effective space temperature values to produce a scan-specific calibration. Scan may still be calibrated using coefficients from another scan.

Bit 13: Insufficient valid shelf temperature values to use in a scan calibration. Fall-back constant shelf temperatures are used.

Bits 14-16: reserved (0)

Bit 17: This scan's black body view not used. A scan-specific calibration may still be calculated using black body views from neighboring scans.

Bits 18-19: reserved (0)

Bit 20: This scan's space view #1 not used because of lunar intrusion or other problem. A scan-specific calibration may still be calculated using space views from neighboring views and scans.

Bit 21: This scan's space view #2 not used because of lunar intrusion or other problem. A scan-specific calibration may still be calculated using space views from neighboring views and scans.

Bit 22: This scan's space view #3 not used because of lunar intrusion or other problem. A scan-specific calibration may still be calculated using space views from neighboring views and scans.

Bit 23: This scan's space view #4 not used because of lunar intrusion or other problem. A scan-specific calibration may still be calculated using space views from neighboring views and scans.

Bit 24: Missing moon angle for this scan's space view #1. Lunar intrusion status is unknown.

Bit 25: Missing moon angle for this scan's space view #2. Lunar intrusion status is unknown.

Bit 26: Missing moon angle for this scan's space view #3. Lunar intrusion status is unknown.

Bit 27: Missing moon angle for this scan's space view #4. Lunar intrusion status is unknown.

Bits 28-32: reserved (0)
float warm_nedt:valid_range=0.001, 100.0;
string warm_nedt:long_name="Warm NEdT";
string warm_nedt:description="Noise equivalent delta temperature derived from observations of the warm calibration target";
float warm_nedt:_FillValue=9.969209683868690e+36f;
string warm_nedt:coverage_content_type="qualityInformation";

string band_lbl(band);
string band_lbl:long_name="Band name";
string band_lbl:standard_name="sensor_band_identifier";
string band_lbl:description="List of Microwave bands (K, Ka, V, W, G)";
string band_lbl:coverage_content_type="auxiliaryInformation";

ushort channel(channel);
string channel:units="1";
string channel:long_name="Channel number";
ushort channel:_FillValue= 65535us;
string channel:coverage_content_type="auxiliaryInformation";

string chan_band(channel);
string chan_band:long_name="Channel band";
string chan_band:description="Name of band for each channel";
string chan_band:coverage_content_type="auxiliaryInformation";

char antenna(channel);
string antenna:long_name="Antenna name";
string antenna:standard_name="sensor_antenna_identifier";
char antenna:_FillValue=",";
string antenna:coverage_content_type="auxiliaryInformation";

float center_freq(channel);
string center_freq:units="MHz";
string center_freq:long_name="Channel center frequency";
string center_freq:standard_name="sensor_band_central_radiation_frequency";
string center_freq:description="Channel center frequency";
float center_freq:_FillValue=9.969209683868690e+36f;
string center_freq:coverage_content_type="auxiliaryInformation";

float if_offset_1(channel);
string if_offset_1:units="MHz";
string if_offset_1:long_name="First intermediate frequency offset";
string if_offset_1:description="Offset of first intermediate frequency stage (zero for no mixing)";
float if_offset_1:_FillValue=9.969209683868690e+36f;
string if_offset_1:coverage_content_type="auxiliaryInformation";

float if_offset_2(channel);
string if_offset_2:units="MHz";
string if_offset_2:long_name="Second intermediate frequency offset";
string if_offset_2:description="Offset of second intermediate frequency stage (zero for no mixing)";
float if_offset_2:_FillValue=9.969209683868690e+36f;
string if_offset_2:coverage_content_type="auxiliaryInformation";

float bandwidth(channel);
string bandwidth:units="MHz";
string bandwidth:long_name="Total bandwidth";
string bandwidth:description="Bandwidth of sum of 1, 2, or 4 channels";
float bandwidth:_FillValue=9.969209683868690e+36f;
string bandwidth:coverage_content_type="auxiliaryInformation";
char polarization(channel);
 string polarization:long_name="Polarization";
 string polarization:description="Nominal polarization: Vertical or Horizontal";
 char polarization:_FillValue="",
 string polarization:coverage_content_type="auxillaryInformation";

float beam_width(channel);
 string beam_width:units="degrees";
 string beam_width:long_name="Beam width";
 string beam_width:description="Nominal beam width";
 float beam_width:_FillValue=9.9692099683868690e+36f;
 string beam_width:coverage_content_type="auxillaryInformation";

data:
 attitude_lbl="Roll", "Pitch", "Yaw";
 spatial_lbl="X", "Y", "Z";
 utc_tuple_lbl="year", "month", "day", "hour", "minute",
 "second", "millisecond", "microsecond";
 band_geoloc_chan=1.0, 2.0, 3.0, 16.0, 17.0;
 band_lbl="K", "Ka", "V", "W", "G";
 channel=1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0,
 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0;
 center_freq=23800.0, 31400.0, 50300.0, 51760.0, 52800.0, 53596.0, 54400.0,
 54940.0, 55500.0, 57290.344, 57290.344, 57290.344, 57290.344, 57290.344,
 57290.344, 88200.0, 165500.0, 183310.0, 183310.0, 183310.0, 183310.0,
 183310.0;
 if_offset_1=0.0, 0.0, 0.0, 0.0, 0.0, 115.0, 0.0, 0.0, 0.0,
 0.0, 217.0, 322.0, 322.0, 322.0, 322.0, 322.0, 0.0, 0.0, 7000.0,
 4500.0, 3000.0, 1800.0, 1000.0;
 if_offset_2=0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 10.0, 4.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
 bandwidth=270.0, 180.0, 180.0, 400.0, 400.0, 400.0, 400.0, 400.0, 330.0, 310.0,
 156.0, 144.0, 64.0, 32.0, 12.0, 2000.0, 2300.0, 4000.0, 4000.0,
 2000.0, 2000.0, 1000.0;
 beam_width=5.2, 5.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2,
 2.2, 2.2, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1;

 group: aux {
 variables:
 float offset(atrack, channel);
 string offset:units="Kelvin";
 string offset:long_name="calibration offset";
 string offset:coordinates="subsat_lon subsat_lat";
 string offset:description="Offset used in calibrating earth scene brightness temps.";
 float offset:_FillValue=9.9692099683868690e+36f;
 string offset:coverage_content_type="auxillaryInformation";

 float gain(atrack, channel);
 string gain:units="Count/Kelvin";
 string gain:long_name="calibration gain";
 string gain:coordinates="subsat_lon subsat_lat";
 string gain:description="Gain factor used in calibrating earth scene brightness temps.";
 float gain:_FillValue=9.9692099683868690e+36f;
string gain:coverage_content_type="auxillaryInformation";

float nonlin(atrack, xtrack, channel);
 string nonlin:units="Kelvin";
 float nonlin:valid_range=0.0, 400.0;
 string nonlin:long_name="nonlinearity correction";
 string nonlin:coordinates="lon lat";
 string nonlin:description="Nonlinearity correction used in calibrating earth scene brightness temps.";
 float nonlin:_FillValue=9.969209683868690e+36f;
 string nonlin:coverage_content_type="auxillaryInformation";

float cold_temp(atrack, channel);
 string cold_temp:units="Kelvin";
 string cold_temp:long_name="cold space temperature";
 string cold_temp:coordinates="subsat_lon subsat_lat";
 string cold_temp:description="Effective temperature of cold calibration view (space) (Tcc)";
 float cold_temp:_FillValue=9.969209683868690e+36f;
 string cold_temp:coverage_content_type="auxillaryInformation";

float warm_temp(atrack, channel);
 string warm_temp:units="Kelvin";
 string warm_temp:long_name="warm calibration temperature";
 string warm_temp:coordinates="subsat_lon subsat_lat";
 string warm_temp:description="Effective temperature of warm calibration view (black body) (Twc)";
 float warm_temp:_FillValue=9.969209683868690e+36f;
 string warm_temp:coverage_content_type="auxillaryInformation";

} // aux
} // l1b_atms