

HIRDLS SW-HIR-2006

Originator:

Charles Cavanaugh Date: 10 Dec. 2012

Subject/Title: The Design of the HIRDLS
Level 0 – Level 1 Processor

Description/Summary/Contents:

The purpose of this document is to create a design specification for the High Resolution Dynamics Limb Sounder
(HIRDLS) Level 0 to Level 1 (L1) Processor, hereby known as L1 Processor. This design specification will extend
the architecture of L1 Processor at a level of detail sufficient to facilitate implementation. It is assumed that the
reader of this document has already read and understood the documented architectural plan of L1 Processor.

Keywords:

Purpose of this Document:

Oxford University
Atmospheric, Oceanic &
Planetary Physics
Parks Road
OXFORD OXI 3PU
United Kingdom

University of Colorado, Boulder
Center for Limb Atmospheric Sounding
3450 Mitchell Lane, Bldg. FL-0
Boulder, CO 80301
 EOS

The Design of the
HIRDLS Level 0 – Level 1 Processor

Charles Cavanaugh

 i

Table of Contents

Table of Contentsi
List of Figuresiv
List of Abstractionsvi

Section 1 Document Purpose and Goal1
Section 2 Design Notation and Goal1
Section 3 Design Considerations1
Section 3.1 Favor Stack Memory1
Section 3.2 Recover From Failure1
Section 3.3 Reduce Memory Scope2
Section 3.4 Force Safe Passing2
Section 4 Design Representations2
Section 4.1 Packages2
Section 4.2 Abstractions2
Section 4.3 Dependencies3
Section 4.4 Collaborations4
Section 4.5 Responsibilities4
Section 4.6 Contracts4
Section 5 Design Methodology4
Section 6 Package Enumeration5
Section 7 Diagnostics Package5
Section 7.1 System Reporter Abstraction5
Section 7.2 Diagnostic Manager Abstraction6
Section 7.3 Diagnostic Data Abstraction6
Section 7.4 Termination Manager Abstraction7
Section 7.5 Termination Data Abstraction7
Section 8 Service Package7
Section 8.1 Constants Service Abstraction7
Section 8.2 HDF5 Service Abstraction8
Section 8.3 Missing Value Service Abstraction9
Section 8.4 Program Abortion Service Abstraction9
Section 8.5 Time Conversion Service Abstraction9
Section 8.6 PCF Service Abstraction10
Section 8.7 Metadata Service Abstraction10
Section 9 File Package11
Section 9.1 Processor File Abstraction11
Section 9.2 ASCII File Abstraction11
Section 9.3 Binary File Abstraction12
Section 9.4 HDF5 File Abstraction12
Section 9.5 HDF5 Read File Abstraction12
Section 10 Ingester Package13
Section 10.1 Packet Ingester Abstraction14
Section 10.2 HIR0Sci File Abstraction14
Section 10.3 HIR0Sci Packet Abstraction15

 ii

Table of Contents (continued)

Section 11 Transformer Package15
Section 11.1 Housekeeping Package15
Section 11.1.1 Housekeeping Transformer Abstraction15
Section 11.1.2 Housekeeping File Abstraction16
Section 11.1.3 Housekeeping Data Abstraction17
Section 11.2 Data Transformer Abstraction17
Section 11.3 Azimuth Transformer Abstraction17
Section 11.4 Elevation Transformer Abstraction18
Section 11.5 Radiance Transformer Abstraction18
Section 11.6 Time Transformer Abstraction18
Section 11.7 Transformed Data Abstraction19
Section 11.8 Transformed Packet Abstraction19
Section 12 Flagger Package19
Section 12.1 Data Flagger Abstraction20
Section 12.2 STXX Flagger Abstraction21
Section 12.3 ST00 Flagger Abstraction21
Section 12.4 Flagger Creator Abstraction21
Section 12.5 Flagged Data Abstraction21
Section 12.6 Flagged Packet Abstraction22
Section 13 Builder Package22
Section 13.1 Sequence Builder Abstraction22
Section 13.2 Sequenced Data Abstraction23
Section 13.3 Sequenced Packet Abstraction24
Section 14 Sequencer Package24
Section 14.1 Data Sequencer Abstraction24
Section 15 Locator Package24
Section 15.1 Geolocation Service Abstraction25
Section 15.2 Matrix Service Abstraction25
Section 15.3 Data Locator Abstraction26
Section 15.4 Celestial Body Locator Abstraction26
Section 15.5 Channel Offset Locator Abstraction26
Section 15.6 LOS Locator Abstraction28
Section 15.7 Spacecraft Locator Abstraction28
Section 15.8 Tangent Point Locator Abstraction28
Section 16 Calibrator Package29
Section 16.1 Generator Package29
Section 16.1.1 Offset Generator Abstraction29
Section 16.1.2 Flux File Abstraction30
Section 16.1.3 Flux Data Abstraction30
Section 16.2 Corrector Package30
Section 16.2.1 OOF Corrector Abstraction31
Section 16.2.2 Correction File Abstraction31
Section 16.2.3 Correction Data Abstraction32
Section 16.3 Data Calibrator Abstraction32

 iii

Table of Contents (continued)

Section 16.4 Calibration File Abstraction33
Section 16.5 Calibration Data Abstraction33
Section 17 Reformer Package33
Section 17.1 Data Reformer Abstraction34
Section 17.2 Reformed Packet Abstraction34
Section 18 Egester Package34
Section 18.1 Data Egester Abstraction35
Section 18.2 HIRDLS1 File Abstraction35
Section 18.3 HIRDLS1 Data Abstraction36
Section 19 Writer Package36
Section 19.1 Data Writer Abstraction36
Section 20 Processor Package37
Section 20.1 L1 Processor Abstraction37

Appendix A Abstraction InterfacesA-1

 iv

List of Figures

Figure 1 L1 Processor Hierarchy of Packages3
Figure 2 Diagnostics Package Hierarchy5
Figure 3 System Reporter Abstraction6
Figure 4 Diagnostic Manager and Diagnostic Data Abstractions6
Figure 5 Termination Manager and Termination Data Abstractions7
Figure 6 Service Package Hierarchy7
Figure 7 Constants Service Abstraction8
Figure 8 HDF5 Service Abstraction8
Figure 9 Missing Value Service Abstraction9
Figure 10 Program Abortion Service Abstraction9
Figure 11 Time Conversion Service Abstraction10
Figure 12 PCF Service Abstraction10
Figure 13 Metadata Service Abstraction10
Figure 14 File Package Hierarchy11
Figure 15 Processor File Abstraction11
Figure 16 ASCII File Abstraction12
Figure 17 Binary File Abstraction12
Figure 18 HDF5 File Abstraction13
Figure 19 HDF5 Read File Abstraction13
Figure 20 Ingester Package Hierarchy13
Figure 21 Packet Ingester Abstraction14
Figure 22 HIR0Sci File and HIR0Sci Packet Abstractions14
Figure 23 Transformer Package Hierarchy15
Figure 24 Housekeeping Package Hierarchy16
Figure 25 Housekeeping Transformer Abstraction16
Figure 26 Housekeeping File and Housekeeping Data Abstractions16
Figure 27 Data Transformer Abstraction17
Figure 28 Azimuth Transformer Abstraction18
Figure 29 Elevation Transformer Abstraction18
Figure 30 Radiance Transformer Abstraction18
Figure 31 Time Transformer Abstraction19
Figure 32 Transformed Data and Transformed Packet Abstractions19
Figure 33 Flagger Package Hierarchy20
Figure 34 Data Flagger Abstraction20
Figure 35 STXX Flagger and ST00 Flagger Abstractions21
Figure 36 Flagger Creator Abstraction22
Figure 37 Flagged Data and Flagged Packet Abstractions22
Figure 38 Builder Package Hierarchy23
Figure 39 Sequence Builder Abstraction23
Figure 40 Sequenced Data and Sequenced Packet Abstractions24
Figure 41 Data Sequencer Abstraction25
Figure 42 Locator Package Hierarchy25
Figure 43 Geolocation Service Abstraction26
Figure 44 Matrix Service Abstraction26

 v

List of Figures (continued)

Figure 45 Data Locator Abstraction27
Figure 46 Celestial Body Abstraction27
Figure 47 Channel Offset Locator Abstraction27
Figure 48 LOS Locator Abstraction28
Figure 49 Spacecraft Locator Abstraction28
Figure 50 Tangent Point Locator Abstraction28
Figure 51 Calibrator Package Hierarchy29
Figure 52 Generator Package Hierarchy29
Figure 53 Offset Generator Abstraction30
Figure 54 Flux File and Flux Data Abstractions30
Figure 55 Corrector Package Hierarchy31
Figure 56 OOF Corrector Abstraction31
Figure 57 Correction File and Correction Data Abstractions32
Figure 58 Data Calibrator Abstraction32
Figure 59 Calibration File and Calibration Data Abstractions33
Figure 60 Reformer Package Hierarchy33
Figure 61 Data Reformer Abstraction34
Figure 62 Egester Package Hierarchy34
Figure 63 Data Egester Abstraction35
Figure 64 HIRDLS1 File Abstraction35
Figure 65 HIRDLS1 Data Abstraction36
Figure 66 Data Writer Abstraction36
Figure 67 L1 Processor Abstraction37

 vi

List of Abstractions

ASCII File11 . .A-4
Azimuth Transformer17 . .A-6
Binary File12 . .A-3
Calibration Data33 . .A-17
Calibration File33 . .A-17
Celestial Body Locator26 . .A-15
Channel Offset Locator26 . .A-15
Constants Service7 . .A-2
Correction Data32 . .A-17
Correction File31 . .A-17
Data Calibrator32 . .A-17
Data Egester35 . .A-20
Data Locator26 . .A-15
Data Flagger20 . .A-8
Data Reformer34 . .A-18
Data Sequencer24 . .A-14
Data Transformer17 . .A-6
Data Writer36 . .A-20
Diagnostic Data6 . .A-1
Diagnostic Manager6 . .A-1
Elevation Transformer18 . .A-7
Flagged Data21 . .A-10
Flagged Packet22 . .A-9
Flagger Creator21 . .A-9
Flux Data30 . .A-16
Flux File30 . .A-16
Geolocation Service25 . .A-14
HDF5 File12 . .A-4
HDF5 Read File12 . .A-4
HDF5 Service8 . .A-2
HIR0Sci File14 . .A-5
HIR0Sci Packet15 . .A-5
HIRDLS1 Data36 . .A-20
HIRDLS1 File35 . .A-20
Housekeeping Data17 . .A-6
Housekeeping File16 . .A-6
Housekeeping Transformer15 . .A-5
L1 Processor37 . .A-21
LOS Locator28 . .A-15
Matrix Service25 . .A-15
Metadata Service10 . .A-3
Missing Value Service9 . .A-3
Offset Generator29 . .A-16
OOF Corrector31 . .A-16

 vii

List of Abstractions (continued)

Packet Ingester14 . .A-4
PCF Service10 . .A-3
Processor File11 . .A-3
Program Abortion Service9 . .A-3
Radiance Transformer18 . .A-6
Reformed Packet34 . .A-18
Sequence Builder22 . .A-10
Sequenced Data23 . .A-10
Sequenced Packet24 . .A-10
Spacecraft Locator28 . .A-15
ST00 Flagger21 . .A-9
STXX Flagger20 . .A-8
System Reporter5 . .A-1
Tangent Point Locator28 . .A-16
Termination Data7 . .A-1
Termination Manager7 . .A-1
Time Conversion Service9 . .A-2
Time Transformer18 . .A-7
Transformed Data19 . .A-7
Transformed Packet19 . .A-7

 1

1 Document Purpose and Goal

The purpose of this document is to create a design specification for the High Resolution Dynamics Limb Sounder (HIRDLS)
Level 0 to Level 1 (L1) Processor, hereby known as L1 Processor. This design specification will extend the architecture of
L1 Processor at a level of detail sufficient to facilitate implementation. It is assumed that the reader of this document has
already read and understood the documented architectural plan of L1 Processor.

The goal of this document is to create a design that correctly models the overviewed task, and lays out a plan that distributes
system intelligence as evenly as possible, is easy to understand and implement, and easy to extend or revise, if or when
necessary in the future.

2 Design Notation and Goal

The notation used in this document will be the Unified Modeling Language (UML). However, the method used to specify
each abstraction will be based on the work of Ward Cunningham and Kent Beck, and detailed in Designing Object-Oriented
Software (Wirfs-Brock, et.al, 1990). This method places a high degree of importance on finding each abstraction’s
responsibilities and collaborations. C++ syntax will be used to specify detailed abstraction information (such as public
contract interface). The goal of the design is to create the simplest system to correctly accomplish the task. Though effort
will be made to make abstractions reusable throughout the system, no effort will be made to make abstractions reusable
outside of the system, i.e. no functionality or data will exist that is not used by the system, unless that functionality makes for
a more extensible system.

3 Design Considerations

As first mentioned in the L1 Processor Requirements document, L1 Processor is a stand-alone, non-graphical, non-embedded
scientific application, and as such, resource usage has become a primary design consideration. Through negotiations with the
HIRDLS Program Manager and HIRDLS Data Manager, available data storage size is not a concern. Application memory
size, though, is a concern, and efficient usage of memory must be planned. The L1 Processor memory management plan is
twofold: 1) create a design that minimizes memory complexity; and 2) utilize tools during implementation to help find
memory use flaws. The latter part of the plan is beyond the scope of this document. The former part has four approaches: 1)
favor stack memory over heap memory; 2) implement allocation failure recovery; 3) reduce the scope of heap allocated
memory; and 4) force safe memory parameter passing. Though the last three approaches are more implementation issues
than design issues, all four approaches are addressed further in this section.

3.1 Favor Stack Memory

Data created with stack memory has the benefit of being unwound when the data’s scope is terminated. Heap memory
persists until explicitly terminated, and is therefore highly prone to leaking. If an abstraction is needed within a method,
prefer to allocate it on the stack. If the method is called many, many times, consider having the needed abstraction as a
private data member of the employing abstraction.

3.2 Recover From Failure

Stack memory use, though favored over heap memory use, will not be exclusive to a system with the size and complexity of
the HIRDLS L1 Processor. Every time an attempt is made to allocate heap memory, the status of the allocation must be
checked before using the memory. If there was a failure, the system should recover in a consistent and graceful way.
Immediately conveying failure information to the system user and exiting from the system is acceptable, and preferred.

 2

3.3 Reduce Memory Scope

Again, there will be times when using heap memory is unavoidable (as when creating a vector of abstractions – vectorizing
the address of the abstraction is much more efficient than vectorizing the entire abstraction). The scope of the accessibility of
the memory must be reduced to its lowest practical point, but never higher than abstraction-wide scope. That is, the most
preferred way to use heap memory is to allocate it, use it and destroy it within the same abstraction method. When it is not
possible to destroy it within the same method as allocated (as with the example above), the memory must be destroyed in
another method of the same abstraction.

3.4 Force Safe Passing

This aspect of the plan disallows destruction of memory passed into a method via the parameter list. If it is necessary to pass
allocated memory to a method via the parameter list, that memory must still exist in its original form when the method
terminates. The memory passed in is owned by another method, and it is incumbent on the owning method to destroy the
memory, and any changes to the memory, or aggregation of the memory, is disallowed by the called method. If the language
supports compile-time checking (such as forcing constant pointers), this must be used to verify the safeness of parameter
memory.

4 Design Representations

The L1 Processor Architecture document introduced various packages from which L1 Processor will be built. Those
packages will be enumerated in more detail in this document. Included in the detail will be the various abstractions that make
up a given package. As mentioned in Section 2, UML notation will be used to show a package’s internal mechanisms,
including abstractions, dependencies, collaborations, responsibilities and contracts.

4.1 Packages

The packages that comprise L1 Processor are logical encapsulations of a collection of abstractions that are homogeneous in
purpose, with that purpose reflected in the package name. Packages are the building blocks for a system, and are the “whats”
in that system. Figure 1 shows the hierarchy of the L1 Processor packages introduced in the L1 Processor Architecture
document (though the names have been altered to fit this document’s notation that packages have a singular name). The goal
of that document was to identify the “whats” or packages necessary to fulfill the requirements of L1 Processor. The goal of
this document is to identify the “hows” of each package. The Diagnostics package is at the lowest level, and is accessible to
all other packages. The Service package, which is to present to L1 Processor packages a simplified front-end to SDP Toolkit,
is a level higher than Diagnostics (which means Service can use Diagnostics), and is accessible to all other packages. The
File package is introduced here, and its purpose is to provide a building block for file input/output. The other packages
shown in Figure 1 have only explicit accessibility to those packages to which each package’s emanating arrows point.

4.2 Abstractions

Three different types of abstractions are used in L1 Processor: process, control and data. Where packages are homogeneous
in purpose, process abstractions are homogeneous in action, control abstractions are homogeneous in idea, and data
abstractions are homogeneous in content. Process abstractions are about action, so they have “actiony” names, such as Data
Transformer or File Writer. Control abstractions are about idea, so they have “ideay” names, such as PCF Service or
HIRDLS1 File. Data abstractions are about content, so they have “contenty” names, such as Sequenced Data or HIR0SCI
Packet. All abstractions, regardless of type, are to fully encapsulate all functionality needed to accomplish their specified
task, and to present to L1 Processor the simplest interface possible. Fully encapsulate does not mean an abstraction must be
totally self-contained and needing no other abstractions. Fully encapsulate means that no other abstraction need know how it
does its job, only that it does its job.

 3

4.3 Dependencies

A package is dependent on another package when, obviously, the employing package needs something from the employed
package. The exception to this is when two packages communicate via a data abstraction, which then makes the two
packages dependent on the data abstraction. Because this approach minimizes inter-package dependencies within the system,
or at the very least localizes the dependencies, communicating via data abstractions is the preferred way to handle inter-
package dependencies in L1 Processor. This is in agreement with the desire for low coupling in a system1. In a complex
system, unplanned dependencies can get circular and unmaintainable, and one of the goals of L1 Processor is to maximize
maintainability. The L1 Processor Architecture document shows that packages communicate with each other via data
aggregations, and therefore L1 Processor packages can be independently implemented and tested, making the system less
circular and more maintainable. In the case(s) where a package encapsulates other packages, inter-package dependencies
cannot be eliminated, but can be minimized by planning no inter-package dependencies amongst the encapsulated packages.
In this document, abstraction dependency and hierarchy figures are interchangeable (similar to the packages in Figure 1).

1 W. Stevens, G. Myers, L. Constantine, "Structured Design", IBM Systems Journal, 13 (2), 115-139, 1974.

Figure 1 L1 Processor Hierarchy of Packages

Ingester

Writer

Egester

Transformer

File

Diagnostics

Flagger

Reformer Builder

Locator

Service

Calibrator

Sequencer

Processor

 4

4.4 Collaborations

Identifying and planning inter-package and inter-abstraction collaborations is one of the two important tasks for this L1
Processor Design document (responsibility is the other important task, and that will be detailed in Section 4.5). Section 4.3
has already begun the discussion on collaborations, because collaborations, in the package or abstraction sense, are one-way
streets and, therefore, dependencies arise. In the world of human interaction, two-way collaborations are considered
desirable, but in the logical, computer world, two-way collaborations are impossible, as you must first define a “thing”
(package, abstraction, data, etc.) before some other “thing” can make use of it. Collaboration figures will be used by this
document to show how abstractions interact to accomplish their respective tasks. These figures will employ UML notation to
show aggregation, inheritance and simple collaboration (dependency without encapsulation).

4.5 Responsibilities

As first mentioned in Sections 2 and 4.4, identifying a package’s or abstraction’s responsibilities is one of the two
responsibilities of this document. In much the same way the members of a software team have their own responsibilities, so
too do packages and abstractions in a system. It is important to note that abstractions and packages come from
responsibilities, and not vice-versa. As software system construction starts with a Requirements document, package and
abstraction identification starts with responsibilities. The L1 Processor Requirements and Architecture documents have
already begun the process, and have identified numerous packages to carry out the system’s distributed responsibilities. This
document will extend the depth of those responsibilities and identify the abstractions that will need to be created to fulfill the
newer, and more focused, responsibilities. The responsibilities of an abstraction will be enumerated in that abstraction’s
respective section, but will not be displayed in any figure.

4.6 Contracts

Up until now, the L1 Processor documents have expounded on finding the “whats” in the system. The contracts of an
abstraction detail the “hows”. And where packages and abstractions are the nouns, contracts are the verbs. This document
will enumerate the contracts for the abstractions, in their respective sections, in L1 Processor. As mentioned in Section 4.3,
we have the goal of minimizing inter-package and inter-abstraction dependencies, and using data abstractions for
communication does that. With many abstractions, specifically the process and control abstractions, the contracts will detail
that dependency minimization. With data abstractions, however, it is often the case that this method is very inefficient, and
we would have to create a data abstraction that exists solely to update, for instance, another data abstraction. We therefore
minimize dependency on these data abstractions by creating contracts that use only language primitives. A data abstraction,
by definition, encapsulates data, not process or control, so there are no “internal workings” that we would want to hide from
the system.

Contracts have the obligation to detail how they handle failure. Most often, this will involve returning a status Boolean to
detail if they were able to successfully (true) or unsuccessfully (false) carry out their responsibilities. How to represent
success and failure is dependent on the implementation language, but must be consistent throughout the system. If the
language has a Boolean primitive, using it is preferred over the system creating its own. In cases where failure within a
contract is catastrophic to the system (e.g., a memory creation call is unsuccessful) and the system needs to abort processing,
the contract must specify that it has system abortion authorization (noted as ‘SAA’ in the contract tables, all of which are
listed in Appendix A). Contracts that do have SAA might still return status Booleans, as the contract could still fail, though
not catastrophically.

5 Design Methodology

As the L1 Processor documentation has progressed from requirements to architecture to design, we have been employing a
top-down methodology to further decompose the system. These documents have also talked about elements of L1 Processor
being “building blocks” upon which to build other elements, which is the methodology used in bottom-up synthesis. Figure 1
shows three “building block” packages (File, Service, Diagnostic), while showing all other packages in L1 Processor, which
were derived from top-down analysis. The File and Service packages exist to reduce complexity in the system, and are

 5

tasked to contain no more “usefulness” than is needed by L1 Processor. The Diagnostic package exists to pass meaningful
information from the system to the user, and will most likely grow or shrink long after the first production version of L1
Processor has been delivered. Therefore, while the majority of the elements of L1 Processor are derived using a top-down
decomposition, an eye is still open to find where elemental building blocks can be best utilized.

6 Package Enumeration

L1 Processor package designs will be enumerated, in bottom-up order, in the following sections. The intent of enumerating
in this order is to have a package or abstraction well understood before inserting it into the workings of other packages and/or
abstractions. The remainder of this document is left to the detail design of each previously introduced package.

7 Diagnostics Package

The Diagnostics package has the responsibility to provide the system a consistent means to report system diagnostics,
including termination information. As discussed in Section 4.1, this package is the lowest level package in the system and
does not depend on any other package. This non-dependency is a design constraint detailed in the Section 7.1. Figure 2
shows the hierarchy of the abstractions in the package. Each abstraction in the package is detailed further in this section.

7.1 System Reporter Abstraction

System Reporter is a control abstraction, and has the responsibility to accumulate system diagnostic and termination
information, and generate a standardized summary report. To fulfill this responsibility, this abstraction collaborates with
Diagnostic Manager, Termination Manager, Diagnostic Data and Termination Data, and presents an interface of Add and
GetReporter contracts, as shown in Figure 3. The Add contracts allow the system to add diagnostic and termination
information to the report. For the manager abstractions to work correctly, System Reporter must aggregate them and keep
them persistent during its lifetime. This abstraction, in turn, must also be persistent to work correctly. This abstraction is
specified to be globally accessible and fail-safe. Fail-safe means the report must be generated, even if the process terminates
abnormally, and output to some device (file or screen), but employ no memory creation functionality or outside subsystem
dependencies. This specification also applies to the abstractions with which System Reporter aggregates. The intent of this
report is to give the operator some indication of what happened during a system run, so if this report is not generated, the run
will have failed. There must be exactly one instance of this abstraction in the system, and therefore it is specified that this
abstraction be a Singleton creational pattern2, and the GetReporter contract is to return that instance. The classic
implementation of a Singleton has the abstraction encapsulating a pointer to itself, but this breaks this abstraction’s “no
memory creation” requirement. Making the pointer a global stack pointer (guaranteed to be unwound off the stack at
program termination), rather than a heap pointer, is allowable in this one exception. The public contracts of this abstraction

2 As detailed in Design Patterns, Elements of Reusable Object-Oriented Software by Gamma, et.al., 1995

System Reporter

Diagnostic Manager Termination Manager

Diagnostic Data Termination Data

Figure 2 Diagnostics Package Hierarchy

 6

must use only primitives (due to the no subsystem dependency requirement), and must not “fail” in the sense that processing
should stop. Note that there is no contract to generate the status report. The report will be generated when the abstraction is
destroyed.

7.2 Diagnostic Manager Abstraction

Diagnostic Manager is a control abstraction, and has the responsibility to accumulate and retrieve the reported system
diagnostics. To fulfill this responsibility, this abstraction collaborates with Diagnostic Data, and presents an interface of Add
and Retrieve contracts, as shown in Figure 4. The Add contract allows System Reporter to add diagnostic information to the
report, and the Retrieve contract allows System Reporter to retrieve the added diagnostic information. Diagnostic Manager
has the same “no memory creation” requirements as System Reporter, and therefore must aggregate a constant number of
Diagnostic Data abstractions, and keep them persistent during its lifetime. This abstraction needs to be persistent to work
correctly.

7.3 Diagnostic Data Abstraction

Diagnostic Data is a data abstraction, and has the responsibility to encapsulate information specific to one system diagnostic.
To fulfill this responsibility, this abstraction presents an interface of Get, Set and Update contracts, as shown in Figure 4.
The copy constructor, assignment operator, or Set contract can be used by Diagnostic Manager to initialize the abstraction.
The Get contract returns data encapsulated by the abstraction. The Update contract updates the occurrence counter of an
initialized abstraction.

Figure 4 Diagnostic Manager and Diagnostic Data Abstractions

N Diagnostic
Manager

Add
Retrieve

Diagnostic
Data

Get
Set
Update

Figure 3 System Reporter Abstraction

System
Reporter

Diagnostic Manager

Add
GetReporter

Diagnostic Data

Termination Manager

Termination Data

 7

7.4 Termination Manager Abstraction

Termination Manager is a control abstraction, and has the responsibility to store and retrieve the system termination. To
fulfill this responsibility, this abstraction collaborates with Termination Data, and presents an interface of Add and Retrieve
contracts, as shown in Figure 5. The Add contract allows System Reporter to add termination information to the report, and
the Retrieve contract allows System Reporter to retrieve the added termination information. Termination Manager has the
same “no memory creation” requirements as System Reporter, and therefore must aggregate one Termination Data
abstraction (since termination is binary – either normal or abnormal), and keep it persistent during its lifetime. This
abstraction needs to be persistent to work correctly.

7.5 Termination Data Abstraction

Termination Data is a data abstraction, and has the responsibility to encapsulate information specific to the system
termination status. To fulfill this responsibility, this abstraction presents an interface of Get and Set contracts, as shown in
Figure 5. The copy constructor, assignment operator, or Set contract can be used by Termination Manager to initialize the
abstraction. The Get contract returns data encapsulated by the abstraction.

8 Service Package

The Service package has the responsibility to encapsulate all potentially system-wide service abstractions necessary to fulfill
the system requirements. If a service abstraction is specific to one package, then it belongs in that package, otherwise it
belongs in this package. As discussed in Section 4.1, this package is the second lowest package in the system, and can depend
on the Diagnostics package. Figure 6 shows the hierarchy of the abstractions in the package. Each abstraction in the package
is detailed further in this section.

8.1 Constants Service Abstraction

Constants Service is a control abstraction, and has the responsibility to provide a single access point to instrument-specific
constants. To fulfill this responsibility, this abstraction presents an interface of size constants and contracts to test the

Figure 5 Termination Manager and Termination Data Abstractions

Termination
Manager

Add
Retrieve

Termination
Data

Get
Set

Figure 6 Service Package Hierarchy

Metadata Service Constants Service HDF5 Service Missing Value Service

Program Abortion Service Time Conversion Service

PCF Service

 8

validity of some of the size indices, as show in Figure 7. This abstraction is not meant to be instantiated, but instead provide
non-dynamic data into the global space. Persistency is not an issue.

8.2 HDF5 Service Abstraction

HDF5 Service is a control abstraction, and has the responsibility to provide simple and coherent access to HDF5 services
provided via the SDP Toolkit. To fulfill this responsibility, this abstraction collaborates with the SDP Toolkit, and presents
an interface of many file and field access contracts, as shown in Figure 8. The CreateFile contract creates a new HDF5 file,
and the OpenFile contract opens an existing HDF5 file. The CloseFile contract closes an HDF5 file. The CreateSwath
contract creates a new swath within the newly created HDF5 file, and the OpenSwath contract opens an existing swath. The
CloseSwath contract closes access to a swath. The DefineDimension contract defines new dimensions within a newly created
HDF5 file, the DefineField contracts provide multiple ways to define data and geolocation fields within a newly created
HDF5 file, and DefineCompression defines the compression characteristics of a newly defined data or geolocation field. The
GetDimensionSize contract returns a defined dimension size, and the GetFieldFillValue contract returns the fill value of an
already defined field. The WriteField contract writes data to a field, and the WriteAttribute contract writes a file-level
attribute. The ReadField contract reads a field. This abstraction need not be persistent to work correctly, though this
abstraction does return data that needs to stay persistent to work correctly. Therefore, the abstraction that uses this
abstraction must either aggregate the returned data, or begin and end service access within a persistent scope.

Figure 7 Constants Service Abstraction

Constants
Service

CHANNEL_SIZE
CHOPPERCYCLE_SIZE
CHOPPERREV_SIZE
MINORFRAME_SIZE
MAXIMUM_MAJORFRAME_SIZE
MAFREV_SIZE
IsValidChannelIndex
IsValidChopperCycleIndex
IsValidChopperRevIndex
IsValidMinorFrameIndex

Figure 8 HDF5 Service Abstraction

HDF5
Service

CloseFile
CloseSwath
CreateFile
CreateSwath
DefineCompression
DefineDimension
DefineField
GetDinensionSize
GetFieldFillValue
OpenFile
OpenSwath
ReadField
WriteAttribute
WriteField

SDP Toolkit

 9

8.3 Missing Value Service Abstraction

Missing Value Service is a control abstraction, and has the responsibility to provide a single access point for missing value
representation and comparison checking. To fulfill this responsibility, this abstraction presents an interface of missing value
retrieval contracts and missing value comparison contracts, as shown in Figure 9. The Get*MissingValue contracts all return
the primitive-specific representation of system-wide missing value, and the IsMissingValue contracts tests whether a value is
the missing value. This abstraction need not be persistent to work correctly.

8.4 Program Abortion Service Abstraction

Program Abortion Service is a control abstraction, and has the responsibility to provide a consistent means to abort the
program. To fulfill this responsibility, this abstraction collaborates with System Reporter, and presents an interface of Abort
contracts, as shown in Figure 10. These contracts add an abnormal termination notice to the Report Generator abstraction,
and then abort the system with a failure indication. This abstraction need not be persistent to work correctly. This
abstraction has not been shown in any collaboration figures, but of course is available to any abstraction that needs this
access.

8.5 Time Conversion Service Abstraction

Time Conversion Service is a control abstraction, and has the responsibility to provide simple time format conversion
service. To fulfill this responsibility, this abstraction collaborates with the SDP Toolkit, and presents an interface of
conversion contracts, as shown in Figure 11. Each contract does as its name specifies, converting a value from one time
format to another. This abstraction need not be persistent to work correctly.

Figure 9 Missing Value Service Abstraction

Missing Value
Service

GetShortMissingValue
GetUnsignedShortMissingValue
GetIntMissingValue
GetLongMissingValue
GetFloatMissingValue
GetDoubleMissingValue
IsMissingValue

Figure 10 Program Abortion Service Abstraction

Program Abortion
Service

Abort
System Reporter

 10

8.6 PCF Service Abstraction

PCF Service is a control abstraction, and has the responsibility to provide simple and coherent access to process control file
(PCF) access services provided via the SDP Toolkit. To fulfill this responsibility, this abstraction collaborates with the SDP
Toolkit, and presents an interface of GetFilename and GetParameter contracts, as shown in Figure 12. The GetFilename
contracts provide multiple ways to retrieve the name of a file listed in the PCF. The GetParameter contract provides a means
of retrieving an input parameter listed in the PCF. This abstraction need not be persistent to work correctly.

8.7 Metadata Service Abstraction

Metadata Service is a control abstraction, and has the responsibility to provide simple and coherent access to ECS metadata
services provided via the SDP Toolkit. To fulfill this responsibility, this abstraction collaborates with PCF Service and the
SDP Toolkit, and presents an interface of Set and Write contracts, as shown in Figure 13. The Set contracts allow setting of
ECS metadata parameters, and the Write contract writes the ECS metadata to the file with which it is connected. ECS service
access needs to be initialized and terminated, but that should happen upon abstraction instantiation and destruction,
respectively. This abstraction needs to be persistent to work correctly.

Figure 11 Time Conversion Service Abstraction

Time Conversion
Service

ConvertTAI58ToTAI93
ConvertTAI93ToUTC
ConvertUTCToJD
ConvertUTCToTAI93

SDP Toolkit

Figure 12 PCF Service Abstraction

PCF
Service

GetFilename
GetParameter

SDP Toolkit

Figure 13 Metadata Service Abstraction

Metadata
Service

Set
Write

PCF Service

SDP Toolkit

 11

9 File Package

The File package has the responsibility to encapsulate all abstractions necessary to provide the system a consistent means to
interact with data files. As discussed in Section 4.1, this package is the third lowest package in the system, and can depend
on the Diagnostics and Service packages. Figure 14 shows the hierarchy of the abstractions in the package. Each abstraction
in the package is detailed further in this section.

9.1 Processor File Abstraction

Processor File is a control abstraction, and has the responsibility to manage low-level access to all files within the system, but
only as a pure virtual abstraction intended to be used as a base for all file abstractions in the system. To fulfill this
responsibility, this abstraction collaborates with PCF Service, and presents an interface of IsValid, GetLogical and GetName
contracts, as shown in Figure 15. The IsValid contract determines if the file is valid, he GetLogical contract returns the
logical ID of the file, and the GetName contract returns the name of the file. This abstraction does not handle opening and
closing, as those are specific to a type of file. For this abstraction to be used in a realistic manner, the abstraction that is
derived from it needs to be persistent, unless this abstraction is used solely for the purpose of testing the validity of a file.

9.2 ASCII File Abstraction

ASCII File is a control abstraction, and has the responsibility to manage access to a read-only, sequential-access ASCII file,
but only as a pure virtual abstraction intended to be used as a base for file abstractions that model ASCII files. To fulfill this
responsibility, this abstraction collaborates with Processor File, and presents an interface of Open, Close, Read and GetToken
contracts, as shown in Figure 16. The Open contract opens the existing file for reading, the Close contract closes the opened
file, and the Read contract reads the next line in the opened file. The GetToken contracts are provided to help parse a file line
in the usual way: to extract a particular token from the line. For this abstraction to work correctly across multiple Read calls,
the abstraction that is derived from this abstraction needs to be persistent.

Figure 15 Processor File Abstraction

Processor
File

IsValid
GetLogical
GetName

PCF Service

Figure 14 File Package Hierarchy

HDF5 Read File ASCII File Binary File

Processor File

HDF5 File

 12

9.3 Binary File Abstraction

Binary File is a control abstraction, and has the responsibility to manage access to a read-only, sequential-access binary file,
but only as a pure virtual abstraction intended to be used as a base for file abstractions that model binary files. To fulfill this
responsibility, this abstraction collaborates with Processor File, and presents an interface of Open, Close and Read contracts,
as shown in Figure 17. The Open contract opens the existing file for reading, the Close contract closes the opened file, and
the Read contract reads the next specified chunk size of data in the opened file. For this abstraction to work correctly across
multiple Read calls, the abstraction that is derived from this abstraction needs to be persistent.

9.4 HDF5 File Abstraction

HDF5 File is a control abstraction, and has the responsibility to manage access to a write-only, HDF5-formatted file, but only
as a pure virtual abstraction intended to be used as a base for file abstractions that model HDF5 files. To fulfill this
responsibility, this abstraction collaborates with Processor File and HDF5 Service, and presents an interface of creating,
closing, defining and writing contracts, as shown in Figure 18. The Create contract creates a new HDF5 file, and the Close
contract closes a newly created HDF5 file. The DefineDimension contract is used to define dimensions of a newly created
HDF5 file, and the DefineField contracts are used to define fields in a newly created HDF5 file. The WriteField contract
writes a field’s data to the newly created HDF5 file, and the WriteAttribute writes a file-level attribute to a newly created
HDF5 file. For this abstraction to work correctly across its multiple calls, the abstraction that is derived from this abstraction
needs to be persistent.

9.5 HDF5 Read File Abstraction

HDF5 Read File is a control abstraction, and has the responsibility to manage access to a read-only, HDF5-formatted file, but
only as a pure virtual abstraction intended to be used as a base for file abstractions that model HDF5 files. To fulfill this
responsibility, this abstraction collaborates with Processor File and HDF5 Service, and presents an interface of opening,
closing and reading contracts, as shown in Figure 19. The Open contract opens an existing HDF5 file, and the Close contract
closes an opened HDF5 file. The GetDimensionSize contract retrieves the size of a dimension in an opened HDF5 file. The

Figure 16 ASCII File Abstraction

ASCII
File

Close
GetToken
Open
Read

Processor File

Figure 17 Binary File Abstraction

Binary
File

Close
Open
Read

Processor File

 13

ReadField contracts read fields of specified data types. For this abstraction to work correctly across its multiple calls, the
abstraction that is derived from this abstraction needs to be persistent.

10 Ingester Package

The Ingester package has the responsibility to encapsulate all abstractions necessary to provide the system a means to ingest
packets from the HIRDLS L0 file(s). As shown in Figure 1, this package is used by the Sequencer and Transformer
packages, and has access to the File, Service and Diagnostics packages. Figure 20 shows the hierarchy of the abstractions in
the package. Each abstraction in the package is detailed further in this section.

Packet Ingester

HIR0Sci File

HIR0Sci Packet

Figure 20 Ingester Package Hierarchy

Figure 18 HDF5 File Abstraction

HDF5
File

Close
Create
DefineDimension
DefineField
WriteAttribute
WriteField

Processor File

HDF5 Service

Figure 19 HDF5 Read File Abstraction

HDF5 Read
File

Close
GetDimensionSize
Open
ReadField

Processor File

HDF5 Service

 14

10.1 Packet Ingester Abstraction

Packet Ingester is a process abstraction, and has the responsibility to ingest packets from the HIR0Sci file(s), and return those
raw packets to the system. To fulfill this responsibility, this abstraction collaborates with HIR0Sci File and HIR0Sci Packet,
and presents an interface of one Ingest contract, as shown in Figure 21. The Ingest contract is to return the next packet in the
file(s) stream. The exact mechanisms for how Packet Ingester fulfills its responsibility is left for implementation, whether it
reads in all packets from all HIR0Sci File(s) upon instantiation, or if it reads in one packet at a time per call, or any other
option. What is specified here is that Packet Ingester must manage the raw packets in such a manner as to seamlessly return
the next packet, in sequence, and return a Boolean when it can not return the next packet, whether from error or from a lack
of further packets. No matter how Packet Ingester manages its responsibility, this abstraction is specified to necessitate
persistence to work correctly.

10.2 HIR0Sci File Abstraction

HIR0Sci File is a control abstraction, and has the responsibility to manage all access to a HIR0Sci file. To fulfill this
responsibility, this abstraction collaborates with Binary File and HIR0Sci Packet, and presents an interface of one GetFile
contract and one GetNextPacket contract, as shown in Figure 22. The GetFile contract returns an instance of a HIR0Sci File
abstraction. At this time, this instance is not considered a Singleton3, as management of the HIR0Sci file(s) is left for
implementation, but the contract for returning an instance of this abstraction is left to look like a Singleton, in the case that
that is what is implemented, or changed to during testing and/or maintenance. The GetNextPacket contract returns the next
packet in sequence. This contract is to return a Boolean status to the caller, indicating if it was able to retrieve the next
packet or not. This abstraction needs to be kept persistent to work correctly, except in the case that the instantiated file is
opened, read completely, and closed, in one structural calling sequence.

3 See Section 7.1

Figure 21 Packet Ingester Abstraction

Packet
Ingester

Ingest

HIR0Sci File

HIR0Sci Packet

Figure 22 HIR0Sci File and HIR0Sci Packet Abstractions

HIR0Sci
File

Binary File

HIR0Sci
Packet

Get
GetAzimuth
GetDiagnostic
GetFramecount
GetHousekeeping
GetMif
GetRadiance
GetRDSR
GetSHFI
GetTime
Set

GetFile
GetNextPacket

 15

10.3 HIR0Sci Packet Abstraction

HIR0Sci Packet is a data abstraction, and has the responsibility to manage access to the raw packet data extracted from a
HIR0Sci File. To fulfill this responsibility, this abstraction presents an interface of one Set contract and various Get
contracts, as shown in Figure 22. This abstraction also presents a constant value denoting the size of the data packet it
contains. The copy constructor, assignment operator, or Set contract can be used by HIR0Sci File to initialize the abstraction.
The various Get contracts enumeration is, at this time, not considered exhaustive. It may certainly shrink or grow. These
contracts provide bit manipulation information transformation, i.e., they encapsulate the information necessary to decom bits
into data primitive units. For example, the GetRDSR contract retrieves the RDSR value to the caller, encapsulating the
knowledge of where that information is in the packet, and how to decom it appropriately.

11 Transformer Package

The Transformer package has the responsibility to encapsulate all abstractions necessary to provide the system a means to
transform raw Level 0 data packets into system-usable data packets. As shown in Figure 1, this package is used by the
Sequencer, Flagger and Builder packages, and has access to the Ingester, File, Service and Diagnostics packages. Figure 23
shows the hierarchy of the abstractions and sub-packages in the package. Each abstraction and sub-package in the package is
detailed further in this section.

11.1 Housekeeping Package

The Housekeeping package has the responsibility to encapsulate all abstractions necessary to provide the system a means to
transform raw housekeeping data into system-usable units. As shown in Figure 23, this package is used by the Data
Transformer package. Figure 24 shows the hierarchy of the abstractions in the package. Each abstraction in the package is
detailed further in this section.

11.1.1 Housekeeping Transformer Abstraction

Housekeeping Transformer is a process abstraction, and has the responsibility to transform the housekeeping data in a
HIR0Sci Packet. To fulfill this responsibility, this abstraction collaborates with HIR0Sci Packet, Housekeeping File and
Housekeeping Data, and presents an interface of one Transform contract, as shown in Figure 25. The Transform contract
reads the housekeeping data from HIR0Sci Packet, transforms the data, and then returns the transformed data and a status
Boolean to Data Transformer. In order for the Transform contract to work efficiently, this abstraction, upon instantiation,
needs to read in and store the data from the system’s housekeeping file(s). When the Transform contract is called, the
abstraction searches through the stored data and finds the appropriate data set to use to extract and transform the

Figure 23 Transformer Package Hierarchy

Azimuth Transformer

Data Transformer

Transformed Packet

Housekeeping

Elevation Transformer Radiance Transformer

Time Transformer

Transformed Data

 16

housekeeping data in HIR0Sci Packet, and return the transformed data to the system. Therefore, in order to work efficiently,
this abstraction needs to be persistent.

11.1.2 Housekeeping File Abstraction

Housekeeping File is a control abstraction, and has the responsibility to manage all access to a housekeeping file. To fulfill
this responsibility, this abstraction collaborates with ASCII File and Housekeeping Data, and presents an interface of one
GetFile contract and one Read contract, as shown in Figure 26. The GetFile contract returns an instance of a Housekeeping
File abstraction. At this time, this instance is not considered a Singleton4, as housekeeping files are read-only files, but the
contract for returning an instance of this abstraction is left to look like a Singleton, in the case that that is what is
implemented, or changed to during testing and/or maintenance. The Read contract reads the data from the file and stores it
into a Housekeeping Data instance. This contract is to return a Boolean status to the caller, indicating if it was able to read
the file or not. This abstraction needs to be kept persistent to work correctly, except in the case that the instantiated file is
opened, read completely, and closed, in one structural calling sequence.

4 See Section 7.1

Housekeeping Transformer

Housekeeping File

Housekeeping Data

Figure 24 Housekeeping Package Hierarchy

Figure 26 Housekeeping File and Housekeeping Data Abstractions

Housekeeping
File

ASCII File

GetFile
Read

Housekeeping
Data

Get
Set

Figure 25 Housekeeping Transformer Abstraction

Housekeeping
Transformer

Housekeeping File

Transform
HIR0Sci Packet

Housekeeping Data

 17

11.1.3 Housekeeping Data Abstraction

Housekeeping Data is a data abstraction, and has the responsibility to manage access to the data read from a Housekeeping
File. To fulfill this responsibility, this abstraction presents an interface of one Set contract and various Get contracts, as
shown in Figure 26. This abstraction also presents some constant values denoting various sizes of the data it contains. The
copy constructor, assignment operator, or Set contract can be used by Housekeeping File to initialize the abstraction. The
various Get contracts allow retrieval of all the data, or different cohesive sub-groups of the data.

11.2 Data Transformer Abstraction

Data Transformer is a process abstraction, and has the responsibility to transform the raw data in a HIR0Sci Packet, and
return that system-usable data (e.g., “degrees Kelvin” or “photon counts”) to the system. To fulfill this responsibility, this
abstraction collaborates with HIR0Sci Packet, Azimuth Transformer, Elevation Transformer, Housekeeping Transformer,
Radiance Transformer, Time Transformer, Transformed Data and Transformed Packet, and presents an interface of one
Transform contract, as shown in Figure 27. The Transform contract calls the 5 different transformers, passing to them, in
turn, the input HIR0Sci Packet, and returning a Boolean to the system to denote transformation success or failure. If the
transformers all ran successfully, then Data Transformer fills a Transformed Packet with the usable data, and aggregates that
packet into Transformed Data. The HIRDLS L1 Architecture document specifies that Data Transformer is to make available,
to the system, an aggregation of all the transformed packets, and that is provided in Transformed Data. This abstraction
needs to be persistent to work correctly.

Figure 27 Data Transformer Abstraction

Data
Transformer

Transform

HIR0SCi Packet

Azimuth Transformer

Elevation Transformer

Housekeeping Transformer

Radiance Transformer

Time Transformer

Transformed Data

Transformed Packet

 18

11.3 Azimuth Transformer Abstraction

Azimuth Transformer is a process abstraction, and has the responsibility to transform the azimuth data in HIR0Sci Packet
from raw data into system-usable data. To fulfill this responsibility, this abstraction collaborates with HIR0Sci Packet, and
presents an interface of one Transform contract, as shown in Figure 28. The Transform contract reads the azimuth data from
HIR0Sci Packet, transforms the data, and then returns the transformed data and a status Boolean to Data Transformer.

11.4 Elevation Transformer Abstraction

Elevation Transformer is a process abstraction, and has the responsibility to transform the elevation data in HIR0Sci Packet,
from raw data into system-usable data. To fulfill this responsibility, this abstraction collaborates with HIR0Sci Packet, and
presents an interface of one Transform contract, as shown in Figure 29. The Transform contract reads the elevation data from
HIR0Sci Packet, transforms the data, and then returns the transformed data and a status Boolean to Data Transformer.

11.5 Radiance Transformer Abstraction

Radiance Transformer is a process abstraction, and has the responsibility to transform the radiance data in HIR0Sci Packet,
from raw data into system-usable data. To fulfill this responsibility, this abstraction collaborates with HIR0Sci Packet, and
presents an interface of one Transform contract, as shown in Figure 30. The Transform contract reads the radiance data from
HIR0Sci Packet, transforms the data, and then returns the transformed data and a status Boolean to Data Transformer.

Figure 28 Azimuth Transformer Abstraction

Azimuth
Transformer

Transform

HIR0Sci Packet

Figure 29 Elevation Transformer Abstraction

Elevation
Transformer

Transform
HIR0Sci Packet

Figure 30 Radiance Transformer Abstraction

Radiance
Transformer

Transform

HIR0Sci Packet

 19

11.6 Time Transformer Abstraction

Time Transformer is a process abstraction, and has the responsibility to transform the time data in HIR0Sci Packet, from raw
data into system-usable data. To fulfill this responsibility, this abstraction collaborates with HIR0Sci Packet and Time
Conversion Service, and presents an interface of one Transform contract, as shown in Figure 31. The Transform contract
reads the time data from HIR0Sci Packet, transforms the data, and then returns the transformed data and a status Boolean to
Data Transformer.

11.7 Transformed Data Abstraction

Transformed Data is a control abstraction, and has the responsibility to manage access to the collection of extracted and
transformed packet data. To fulfill this responsibility, this abstraction collaborates with Transformed Packet, and presents an
interface of one Add contract and one GetNext contract, as shown in Figure 32. The Add contract allows the system to add a
Transformed Packet to the collection. It is specified that the Transformed Packet in the Add contract be chronologically
subsequent to the Transformed Packet added in the previous call. The GetNext contract allows the system to have a copy of
the Transformed Packet subsequent to the previous GetNext call. It is specified that using GetNext does not alter the
Transformed Packets in the collection (e.g., delete them from the collection). It is specified that when this abstraction is
deleted, all Transformed Packets in the collection are also deleted.

11.8 Transformed Packet Abstraction

Transformed Packet is a data abstraction, and has the responsibility to manage access to the extracted and transformed packet
data. To fulfill this responsibility, this abstraction presents an interface of one Set contract and various Get contracts, as
shown in Figure 32. The copy constructor, assignment operator, or Set contract can be used by Data Transformer to initialize
the abstraction. The various Get contracts enumeration is, at this time, not considered exhaustive. The list may certainly
shrink or grow.

Figure 31 Time Transformer Abstraction

Time
Transformer

Transform

HIR0Sci Packet

Time Conversion Service

Figure 32 Transformed Data and Transformed Packet Abstractions

Transformed
Data

Add
GetNext

Transformed
Packet

Get
GetScanTable
GetStartTime
GetStopTime
Set

 20

12 Flagger Package

The Flagger package has the responsibility to encapsulate all abstractions necessary to provide the system a means to assign
various processing flags to all ingested and transformed packets. As shown in Figure 1, this package is used by the
Sequencer and Builder packages, and has access to the Transformer, File, Service and Diagnostics packages. Figure 33
shows the hierarchy of the abstractions in the package. Each abstraction in the package is detailed further in this section.

12.1 Data Flagger Abstraction

Data Flagger is a process abstraction, and has the responsibility to attach various flags to all data points ingested into the
system. To fulfill this responsibility, this abstraction collaborates with Transformed Data, Transformed Packet, Flagger
Creator, STXX Flagger, Flagged Data and Flagged Packet, and presents an interface of one Flag contract, as shown in Figure
34. The Flag contract loops through the aggregated data in Transformed Data (calling Flagger Creator to return the
appropriate ST-specific flagger), derives the flags for the respective data point, and aggregates that Flagged Packet into
Flagged Data. The HIRDLS L1 Architecture document specifies that Data Flagger is to make available, to the system, an
aggregation of all the packet flags, and that is provided in Flagged Data. Since this abstraction fulfills its tasks in one call, it
does not need to be persistent to work correctly.

Figure 33 Flagger Package Hierarchy

Flagged Packet

ST00 Flagger

Flagger Creator Flagged Data

STXX Flagger

Data Flagger

Figure 34 Data Flagger Abstraction

Data
Flagger

Flag

Transformed Data

Transformed Packet

Flagger Creator

STXX Flagger

Flagged Packet

Flagged Data

 21

12.2 STXX Flagger Abstraction

STXX Flagger is a placeholder for process abstractions ST02 Flagger to ST33 Flagger, and each has the responsibility to
attach various flags to data points ingested into the system that are of their respective scan table. To fulfill this responsibility,
these abstractions collaborate with ST00 Flagger, and present an interface of one Flag contract, as shown in Figure 35. The
Flag contract decides, given scan mirror movement information, if the data point is part of a nominal scan or is part of a
Kapton scan, for instance. At this time, STXX denotes all scan tables, from 02 to 33, inclusive, except for 11, 18, 19, 31 and
32. Those scan table numbers are no longer in use.

12.3 ST00 Flagger Abstraction

ST00 Flagger is a process abstraction, and each has the responsibility to provide a base abstraction for other abstractions
(placeholded by STXX Flagger) that attach various flags to data points ingested into the system. To fulfill this responsibility,
this abstraction presents an interface of one Flag contract and various Boolean-returning contracts that decide mirror
movement direction, velocity and aperture location, amongst others, as shown in Figure 35. The Flag contract returns basic
fail-safe data point information flags, to be used as a consistent starting point for the STXX Flagger abstractions, which are
assumed to override the fail-safe information if their respective scan table processing determines as such. The other contracts
are provided as services to the STXX Flagger abstractions.

12.4 Flagger Creator Abstraction

Flagger Creator is a process abstraction, and each has the responsibility to create the appropriate STXX Flagger to be used by
the system. To fulfill this responsibility, this abstraction collaborates with STXX Flagger and ST00 Flagger, and presents an
interface of one Create contract, as shown in Figure 36. The Create contract is specified to be an Abstract Factory creational
pattern5, and return an STXX Flagger (or ST00 Flagger as default). This abstraction is not meant to be instantiated, but
instead provide non-dynamic data into the global space. Persistency is not an issue.

12.5 Flagged Data Abstraction

Flagged Data is a control abstraction, and has the responsibility to manage access to the collection of data packet flags. To
fulfill this responsibility, this abstraction collaborates with Flagged Packet, and presents an interface of one Add contract, one
GetNext contract, and various data point information access contracts, as shown in Figure 37. The Add contract allows the
system to add a Flagged Packet to the collection. It is specified that the Flagged Packet in the Add contract be
chronologically subsequent to the Flagged Packet added in the previous call. The GetNext contract allows the system to have

5 As detailed in Design Patterns, Elements of Reusable Object-Oriented Software by Gamma, et.al., 1995

Figure 35 STXX Flagger and ST00 Flagger Abstractions

STXX
Flagger

Flag

ST00
Flagger

Flag
HasValidAtmosphericAzimuthAngle
HasValidKaptonAzimuthAngle
ElevationMonotonic
IsScanningDown
IsScanningLeft
IsScanningRight
IsScanningUp
HasValidElevationVelocity

 22

a copy of the Flagged Packet subsequent to the previous GetNext call. It is specified that using GetNext does not alter the
Flagged Packets in the collection (e.g., delete them from the collection). It is specified that when this abstraction is deleted,
all Flagged Packets in the collection are also deleted. The various data point information access contracts will be necessary
for the Builder package to use to determine which packets are to be further processed.

12.6 Flagged Packet Abstraction

Flagged Packet is a data abstraction, and has the responsibility to manage access to the data packet flags. To fulfill this
responsibility, this abstraction presents an interface of one Set contract, various Get contracts, and various information access
contracts, as shown in Figure 37. The copy constructor, assignment operator, or Set contract can be used by Data Flagger to
initialize the abstraction. The various Get and information access contracts enumeration is, at this time, not considered
exhaustive. The list may certainly shrink or grow.

13 Builder Package

The Builder package has the responsibility to encapsulate all abstractions necessary to provide the system a means to build
the sequence of data packets that are to be further processed by the system. As shown in Figure 1, this package is used by the
Sequencer package, and has access to the Transformer, Flagger, File, Service and Diagnostics packages. Figure 38 shows the
hierarchy of the abstractions in the package. Each abstraction in the package is detailed further in this section.

13.1 Sequence Builder Abstraction

Sequence Builder is a process abstraction, and has the responsibility to build the processable sequence of ingested,
transformed and flagged data. To fulfill this responsibility, this abstraction collaborates with Transformed Data, Transformed
Packet, Flagged Data, Flagged Packet, Sequenced Data and Sequenced Packet, and presents an interface of one Build
contract, as shown in Figure 39. The Build contract loops through the aggregated data in Transformed Data and Flagged

Figure 37 Flagged Data and Flagged Packet Abstractions

Flagged
Data

Add
GetNext
GetSize
GetScanTable
GetTime
IsNominal

Flagged
Packet

Get
GetScanTable
GetTime
IsNominal
IsProcessable
Set

Figure 36 Flagger Creator Abstraction

Flagger
Creator

Create

STXX Flagger

ST00 Flagger

 23

Data, throwing away the packets that are marked unprocessable, and sequencing the remainder into Sequenced Packets,
aggregated into Sequenced Data. The HIRDLS L1 Architecture document specifies that Data Flagger is to make available, to
the system, an aggregation of all the processable data, in sequence, and that is provided in Sequenced Data. Since this
abstraction fulfills its tasks in one call, it does not need to be persistent to work correctly.

13.2 Sequenced Data Abstraction

Sequenced Data is a control abstraction, and has the responsibility to manage access to the collection of processable
sequenced data packets. To fulfill this responsibility, this abstraction collaborates with Sequenced Packet, and presents an
interface of one Add contract, and various Get and Update contracts, as shown in Figure 40. The Add contract allows the
system to add a Sequenced Packet to the collection. It is specified that the Sequenced Packet in the Add contract be
chronologically subsequent to the Sequenced Packet added in the previous call. The Get contracts allow subsequent process
abstractions (e.g., Data Locator, detailed in Section 15) to access the data in the collection, to be used for the respective
abstraction’s task fulfillment. The results of those task fulfillments can then be added into the collection via the Update
contracts. It is specified that using the various Get contracts does not alter the Sequenced Packets in the collection (e.g.,
delete them from the collection). It is specified that when this abstraction is deleted, all Sequenced Packets in the collection
are also deleted.

Sequence Builder

Sequenced Data

Sequenced Packet

Figure 38 Builder Package Hierarchy

Figure 39 Sequence Builder Abstraction

Sequence
Builder

Build

Transformed Data

Transformed Packet

Flagged Packet

Flagged Data

Sequenced Packet

Sequenced Data

 24

13.3 Sequenced Packet Abstraction

Sequenced Packet is a data abstraction, and has the responsibility to manage access to the processable sequenced data packet.
To fulfill this responsibility, this abstraction presents an interface of one Set contract, various Get contracts, and various
Update contracts, as shown in Figure 40. The copy constructor, assignment operator, or Set contract can be used by
Sequence Builder to initialize the abstraction. The various Get and Update contracts enumeration is, at this time, not
considered exhaustive. The list may certainly shrink or grow.

14 Sequencer Package

The Sequencer package has the responsibility to encapsulate all abstractions necessary to provide the system a means to
ingest packets of raw HIR0Sci data, transform those packets into system-usable units, flag the packets to denote
processability (amongst other things), and finally, build a sequence of the processable data packets. As shown in Figure 1,
this package is used by the Processor, Locator and Calibrator packages, and has access to the Ingester, Transformer, Flagger,
Builder, File, Service and Diagnostics packages. The only abstraction in this package is Data Sequencer, and it is detailed
further in this section.

14.1 Data Sequencer Abstraction

Data Sequencer is a process abstraction, and has the responsibility to ingest packets of raw HIR0Sci data, transform those
packets into system-usable units, flag the packets to denote processability (amongst other things), and build a sequence of the
processable data packets. To fulfill this responsibility, this abstraction collaborates with Packet Ingester, HIR0Sci Packet,
Data Transformer, Transformed Data, Data Flagger, Flagged Data, Sequence Builder and Sequenced Data, and presents an
interface of one Sequence contract, as shown in Figure 41. The Sequence contract calls, in a loop, Packet Ingester and Data
Transformer, to ingest and transform packets. When the HIR0Sci Packets have all been ingested and transformed, Data
Sequencer calls Data Flagger to flag all the ingested and transformed packets. When Data Flagger has finished flagging all
the data, Data Sequencer calls Sequence Builder to build the sequence of processable packets, returning that collection in
Sequenced Data. Since this abstraction fulfills its tasks in one call, it does not need to be persistent to work correctly.

Figure 40 Sequenced Data and Sequenced Packet Abstractions

Sequenced
Data

Add
Get
Update

Sequenced
Packet

Add
Get
Set
Update

 25

15 Locator Package

The Locator package has the responsibility to encapsulate all abstractions necessary to provide the system a means to geo-
locate the sequenced data packets. As shown in Figure 1, this package is used by the Processor package, and has access to
the Sequencer, File, Service and Diagnostics packages. Figure 42 shows the hierarchy of the abstractions in the package.
Each abstraction in the package is detailed further in this section.

15.1 Geolocation Service Abstraction

Geolocation Service is a control abstraction, and has the responsibility to provide a simple interface to the SDP Toolkit
geolocation routines. To fulfill this responsibility, this abstraction collaborates with the SDP Toolkit, and presents an
interface of geolocation retrieval contracts, as shown in Figure 43. This contract listing in Figure 43 is intentionally minimal,
as the extent of the contracts is expected to be large. Please see Appendix A for a more comprehensive listing. This
abstraction need not be persistent to work correctly.

Figure 41 Data Sequencer Abstraction

Data
Sequencer

Sequence

Packet Ingester

HIR0Sci Packet

Transformed Data

Data Transformer

Flagged Data

Data Flagger

Sequence Builder

Sequenced Data

Figure 42 Locator Package Hierarchy

Channel Offset Locator

Data Locator

Geolocation Service

Spacecraft Locator Celestial Body Locator Tangent Point Locator LOS Locator

Matrix Service

 26

15.2 Matrix Service Abstraction

Matrix Service is a control abstraction, and has the responsibility to provide a cohesive matrix manipulation interface. To
fulfill this responsibility, this abstraction presents various Multiply, Invert and Transpose contracts, as shown in Figure 44.
This contract listing is expected to shrink or grow during implementation.

15.3 Data Locator Abstraction

Data Locator is a process abstraction, and has the responsibility to geo-locate the processable data packets in the system. To
fulfill this responsibility, this abstraction collaborates with Sequenced Data, Sequenced Packet, Geolocation Service, Matrix
Service, Celestial Body Locator, Channel Offset Locator, LOS Locator, Spacecraft Locator and Tangent Point Locator, and
presents an interface of one Locate contract, as shown in Figure 45. The Locate contract calls Sequenced Data to return the
next Sequenced Packet, then calls the various abstractions in the order necessary to generate all the required geo-location
data, and then calls the appropriate Update contracts of Sequenced Packet and Sequenced Data. Since this abstraction is to
fulfill its tasks in one call, all of this happens in a loop, until there are no more packets of data to geo-locate. And since all of
this happens in one call, this abstraction need not be persistent to work correctly.

15.4 Celestial Body Locator Abstraction

Celestial Body Locator is a process abstraction, and has the responsibility to derive celestial body geolocation information.
To fulfill this responsibility, this abstraction collaborates with Geolocation Service and Matrix Service, and presents an
interface of one Locate contract, as shown in Figure 46. The Locate contract derives information about celestial bodies in the
HIRDLS field of view, and returns that information to the caller, along with a Boolean denoting the status of the call.

Figure 43 Geolocation Service Abstraction

Geolocation
Service

GetAltitude
GetGrazingRay
GetSolarBetaAngle

SDP Toolkit

Figure 44 Matrix Service Abstraction

Matrix
Service

Invert
Multiply
Transpose

 27

15.5 Channel Offset Locator Abstraction

Channel Offset Locator is a process abstraction, and has the responsibility to derive channel offset-from-boresight altitude
information. To fulfill this responsibility, this abstraction collaborates with Geolocation Service and Matrix Service, and
presents an interface of one Locate contract, as shown in Figure 47. The Locate contract derives the offset-from-boresight
information for each channel, and returns that information to the caller, along with a Boolean denoting the status of the call.

Figure 46 Celestial Body Locator Abstraction

Celestial Body
Locator

Locate

Matrix Service

Geolocation Service

Figure 47 Channel Offset Locator Abstraction

Channel Offset
Locator

Locate

Matrix Service

Geolocation Service

Figure 45 Data Locator Abstraction

Data
Locator

Locate
Sequenced Packet

Sequenced Data

Celestial Body Locator

Channel Offset Locator

LOS Locator

Spacecraft Locator

Tangent Point Locator

Matrix Service

Geolocation Service

 28

15.6 LOS Locator Abstraction

LOS Locator is a process abstraction, and has the responsibility to derive HIRDLS line-of-sight location information. To
fulfill this responsibility, this abstraction collaborates with Geolocation Service and Matrix Service, and presents an interface
of one Locate contract, as shown in Figure 48. The Locate contract derives the line-of-sight information, and returns that
information to the caller, along with a Boolean denoting the status of the call.

15.7 Spacecraft Locator Abstraction

Spacecraft Locator is a process abstraction, and has the responsibility to derive Aura spacecraft location information. To
fulfill this responsibility, this abstraction collaborates with Geolocation Service and Matrix Service, and presents an interface
of one Locate contract, as shown in Figure 49. The Locate contract derives the spacecraft information, and returns that
information to the caller, along with a Boolean denoting the status of the call.

15.8 Tangent Point Locator Abstraction

Tangent Point Locator is a process abstraction, and has the responsibility to derive HIRDLS tangent point location
information. To fulfill this responsibility, this abstraction collaborates with Geolocation Service and Matrix Service, and
presents an interface of one Locate contract, as shown in Figure 50. The Locate contract derives the tangent point
information, and returns that information to the caller, along with a Boolean denoting the status of the call.

Figure 48 LOS Locator Abstraction

LOS
Locator

Locate

Matrix Service

Geolocation Service

Figure 49 Spacecraft Locator Abstraction

Spacecraft
Locator

Locate

Matrix Service

Geolocation Service

Figure 50 Tangent Point Locator Abstraction

Tangent Point
Locator

Locate

Matrix Service

Geolocation Service

 29

16 Calibrator Package

The Calibrator package has the responsibility to encapsulate all abstractions necessary to provide the system a means to
calibrate the radiances in the sequenced data packets. As shown in Figure 1, this package is used by the Processor package,
and has access to the Sequencer, File, Service and Diagnostics packages. Figure 51 shows the hierarchy of the abstractions
and sub-packages in the package. Each abstraction and sub-package in the package is detailed further in this section.

16.1 Generator Package

The Generator package has the responsibility to encapsulate all abstractions necessary to provide the Data Calibrator a means
to generate radiometric offset data, to be used for calibration. As shown in Figure 51, this package is used by the Data
Calibrator abstraction. Figure 52 shows the hierarchy of the abstractions in the package. Each abstraction in the package is
detailed further in this section.

16.1.1 Offset Generator Abstraction

Offset Generator is a process abstraction, and has the responsibility to generate radiometric offset data for a given data point
or points. To fulfill this responsibility, this abstraction collaborates with Flux File and Flux Data, and presents an interface of
one Generate contract, as shown in Figure 53. The Generate contract uses the stored flux data to derive a data point’s
radiometric offset data. The stored flux data is specified to be read in at instantiation, so therefore this abstraction needs to be
persistent to work efficiently.

Data Calibrator

Generator

Calibration Data

Figure 51 Calibrator Package Hierarchy

Corrector Calibration File

Offset Generator

Flux File

Flux Data

Figure 52 Generator Package Hierarchy

 30

16.1.2 Flux File Abstraction

Flux File is a control abstraction, and has the responsibility to manage all access to a radiometric flux file. To fulfill this
responsibility, this abstraction collaborates with ASCII File and Flux Data, and presents an interface of one GetFile contract
and one Read contract, as shown in Figure 54. The GetFile contract returns an instance of a Flux File abstraction. At this
time, this instance is not considered a Singleton6, as flux files are read-only files, but the contract for returning an instance of
this abstraction is left to look like a Singleton, in the case that that is what is implemented, or changed to during testing
and/or maintenance. The Read contract reads the data from the file and stores it into a Flux Data instance. This contract is to
return a Boolean status to the caller, indicating if it was able to read the file or not. This abstraction needs to be kept
persistent to work correctly, except in the case that the instantiated file is opened, read completely, and closed, in one
structural calling sequence.

16.1.3 Flux Data Abstraction

Flux Data is a data abstraction, and has the responsibility to manage access to the data read from a Flux File. To fulfill this
responsibility, this abstraction presents an interface of one Set contract and one Get contract, as shown in Figure 54. This
abstraction also presents some a constant value denoting the size of the data it contains. The copy constructor, assignment
operator, or Set contract can be used by Flux File to initialize the abstraction. The Get contract allows retrieval of all the
data.

16.2 Corrector Package

The Corrector package has the responsibility to encapsulate all abstractions necessary to provide the Data Calibrator a means
to correct for out-of-field contamination of the radiances. As shown in Figure 51, this package is used by the Data Calibrator
abstraction. Figure 55 shows the hierarchy of the abstractions in the package. Each abstraction in the package is detailed
further in this section.

6 See Section 7.1

Figure 54 Flux File and Flux Data Abstractions

Flux
File

ASCII File

GetFile
Read

Flux
Data

Get
Set

Figure 53 Offset Generator Abstraction

Offset
Generator

Flux File

Generate
Flux Data

 31

16.2.1 OOF Corrector Abstraction

OOF Corrector is a process abstraction, and has the responsibility to correct for radiometric out-of-field contamination of a
data point or points. To fulfill this responsibility, this abstraction collaborates with Correction File and Correction Data, and
presents an interface of one Correct contract, as shown in Figure 56. The Correct contract uses the stored correction data to
correct for the out-of-field contamination. The stored correction data is specified to be read in at instantiation, so therefore
this abstraction needs to be persistent to work efficiently.

16.2.2 Correction File Abstraction

Correction File is a control abstraction, and has the responsibility to manage all access to an out-of-field correction file. To
fulfill this responsibility, this abstraction collaborates with HDF5 Read File and Correction Data, and presents an interface of
one GetFile contract and one Read contract, as shown in Figure 57. The GetFile contract returns an instance of a Correction
File abstraction. At this time, this instance is not considered a Singleton7, as correction files are read-only files, but the
contract for returning an instance of this abstraction is left to look like a Singleton, in the case that that is what is
implemented, or changed to during testing and/or maintenance. The Read contract reads the data from the file and stores it
into a Correction Data instance. This contract is to return a Boolean status to the caller, indicating if it was able to read the
file or not. This abstraction needs to be kept persistent to work correctly, except in the case that the instantiated file is
opened, read completely, and closed, in one structural calling sequence.

7 See Section 7.1

OOF Corrector

Correction File

Correction Data

Figure 55 Corrector Package Hierarchy

Figure 56 OOF Corrector Abstraction

OOF
Corrector

Correction File

Correct
Correction Data

 32

16.2.3 Correction Data Abstraction

Correction Data is a data abstraction, and has the responsibility to manage access to the data read from a Correction File. To
fulfill this responsibility, this abstraction presents an interface of one Set contract and one Get contract, as shown in Figure
57. This abstraction also presents some a constant value denoting the size of the data it contains. The copy constructor,
assignment operator, or Set contract can be used by Correction File to initialize the abstraction. The Get contract allows
retrieval of all the data.

16.3 Data Calibrator Abstraction

Data Calibrator is a process abstraction, and has the responsibility to calibrate the radiances in the processable data packets in
the system. To fulfill this responsibility, this abstraction collaborates with Sequenced Data, Sequenced Packet, Offset
Generator, OOF Corrector, Calibration File and Calibration Data, and presents an interface of one Calibrate contract, as
shown in Figure 58. The Calibrate contract calls Sequenced Data to return the next Sequenced Packet, then calls the Offset
Generator and OOF Corrector to help calibrate the radiances (Calibration File and Calibration Data are used on instantiation
to store calibration data), and then calls the appropriate Update contracts of Sequenced Packet and Sequenced Data. Since
this abstraction is to fulfill its tasks in one call, all of this happens in a loop, until there are no more packets of data to geo-
locate. And since all of this happens in one call, this abstraction need not be persistent to work correctly.

Figure 57 Correction File and Correction Data Abstractions

Correction
File

HDF5 Read File

GetFile
Read

Correction
Data

Get
Set

Figure 58 Data Calibrator Abstraction

Data
Calibrator

Calibrate
Sequenced Packet

Sequenced Data

Offset Generator

OOF Corrector

Calibration File

Calibration Data

 33

16.4 Calibration File Abstraction

Calibration File is a control abstraction, and has the responsibility to manage all access to a radiometric calibration data file.
To fulfill this responsibility, this abstraction collaborates with ASCII File and Calibration Data, and presents an interface of
one GetFile contract and one Read contract, as shown in Figure 59. The GetFile contract returns an instance of a Calibration
File abstraction. At this time, this instance is not considered a Singleton8, as calibration files are read-only files, but the
contract for returning an instance of this abstraction is left to look like a Singleton, in the case that that is what is
implemented, or changed to during testing and/or maintenance. The Read contract reads the data from the file and stores it
into a Calibration Data instance. This contract is to return a Boolean status to the caller, indicating if it was able to read the
file or not. This abstraction needs to be kept persistent to work correctly, except in the case that the instantiated file is
opened, read completely, and closed, in one structural calling sequence.

16.5 Calibration Data Abstraction

Calibration Data is a data abstraction, and has the responsibility to manage access to the data read from a Calibration File. To
fulfill this responsibility, this abstraction presents an interface of one Set contract and one Get contract, as shown in Figure
59. This abstraction also presents a constant value denoting the size of the data it contains. The copy constructor, assignment
operator, or Set contract can be used by Calibration File to initialize the abstraction. The Get contract allows retrieval of all
the data.

17 Reformer Package

The Reformer package has the responsibility to encapsulate all abstractions necessary to provide the system a means to
reform the geo-located and calibrated sequenced data packets into a form for writing to the output HIRDLS1 file. As shown
in Figure 1, this package is used by the Writer and Egester packages, and has access to the File, Service and Diagnostics
packages. Not shown in Figure 1 is that this package also has access to the Sequencer package. Figure 60 shows the
hierarchy of the abstractions in the package. Each abstraction in the package is detailed further in this section.

8 See Section 7.1

Figure 59 Calibration File and Calibration Data Abstractions

Calibration
File

ASCII File

GetFile
Read

Calibration
Data

Get
Set

Figure 60 Reformer Package Hierarchy

Data Reformer

Reformed Packet

 34

17.1 Data Reformer Abstraction

Data Reformer is a process abstraction, and has the responsibility to reform a packet of geo-located and calibrated data into
the form required for writing to the HIRDLS1 file. To fulfill this responsibility, this abstraction collaborates with Sequenced
Packet and Reformed Packet, and presents an interface of one Reform contract, as shown in Figure 61. The Reform contract
extracts the data from Sequenced Packet, reforms it, then writes the reformed data to a Reformed Packet. This abstraction
need not be persistent to work correctly, but should be kept persistent to work efficiently.

17.2 Reformed Packet Abstraction

Reformed Packet is a data abstraction, and has the responsibility to manage access to a packet of reformed data. To fulfill
this responsibility, this abstraction presents an interface of one Set and one Get contract, as shown in Figure 61. The copy
constructor, assignment operator, or Set contract can be used by Data Reformer to initialize the abstraction. The various Get
contracts (see Appendix A for a full listing) allow the caller to retrieve all or part of the reformed data.

18 Egester Package

The Egester package has the responsibility to encapsulate all abstractions necessary to provide the system a means to egest
(write) reformed data chunks to the HIRDLS1 file. As shown in Figure 1, this package is used by the Writer package, and
has access to the Reformer, File, Service and Diagnostics packages. Figure 62 shows the hierarchy of the abstractions in the
package. Each abstraction in the package is detailed further in this section.

Figure 61 Data Reformer Abstraction

Data
Reformer

Reform

Sequenced Packet

Reformed
Packet

Get
Set

Data Egester

HIRDLS1 File

HIRDLS1 Data

Figure 62 Egester Package Hierarchy

 35

18.1 Data Egester Abstraction

Data Egester is a process abstraction, and has the responsibility to egest (write) a reformed data chunk to a HIRDLS1 file. To
fulfill this responsibility, this abstraction collaborates with Reformed Packet, HIRDLS1 Data and HIRDLS1 File, and
presents an interface of one Egest contract, as shown in Figure 63. The Egest contract takes a Reformed Packet and adds it to
HIRDLS1 Data. When HIRDLS1 Data is full, it is written to HIRDLS1 File, which was created during Data Egester’s
instantiation. When the Data Egester instance is destroyed, HIRDLS1 Data is checked one last time, and if there is data in it,
that data is to be written to HIRDLS1 File. This instantiation must be kept persistent to work correctly.

18.2 HIRDLS1 File Abstraction

HIRDLS1 File is a control abstraction, and has the responsibility to manage all access to a HIRDLS1 file. To fulfill this
responsibility, this abstraction collaborates with HDF5 File, HIRDLS1 Data and Metadata Service, and presents an interface
of one GetFile contract and one WriteNext contract, as shown in Figure 64. The GetFile contract returns the one instance of
a HIRDLS1 File abstraction. This instance must be a Singleton9, as there must be exactly one HIRDLS1 File in the system.
The WriteNext contract writes the given data chunk into the “next” space in the file. This contract is to return a Boolean
status to the caller, indicating if it was able to write the data or not. When the instance of this abstraction is destroyed,
Metadata Service calls are made to write the necessary metadata, which has been accumulated during the WriteNext calls, to
the file. This abstraction needs to be kept persistent to work correctly, except in the case that the instantiated file is opened,
written completely, and closed, in one structural calling sequence.

9 See Section 7.1

Figure 63 Data Egester Abstraction

Data
Egester

Egest

HIRDLS1 File

Reformed Packet

HIRDLS1 Data

Figure 64 HIRDLS1 File Abstraction

HIRDLS1
File

HDF5 File

HIRDLS1 Data

GetFile
WriteNext

Metadata Service

 36

18.3 HIRDLS1 Data Abstraction

HIRDLS1 Data is a data abstraction, and has the responsibility to manage access to the data chunk to be written to HIRDLS1
File. To fulfill this responsibility, this abstraction collaborates with Reformed Packet, and presents an interface of one Add
contract, one multi-purpose Get contract, one IsFull contract, and one Size contract, as shown in Figure 65. This abstraction
also presents a constant value denoting the size of the maximum data it can contain. The copy constructor, assignment
operator, or Add contract can be used by HIRDLS1 Data to initialize the abstraction. The Add contract adds data from a
Reformed Packet. The Get contract allows retrieval of a particular data field, given a field code. The IsFull contract returns a
Boolean denoting if the container is full or not, and the Size contract returns the number of data points in the container.

19 Writer Package

The Writer package has the responsibility to encapsulate all abstractions necessary to provide the system a means to write the
sequenced, geo-located and calibrated data to the HIRDLS1 File. As shown in Figure 1, this package is used by the
Processor package, and has access to the Sequencer, Reformer, Egester, File, Service and Diagnostics packages. The only
abstraction in this package is Data Writer, and it is detailed further in this section.

19.1 Data Writer Abstraction

Data Writer is a process abstraction, and has the responsibility to manage the reformation and egesting of the sequenced, geo-
located and calibrated data. To fulfill this responsibility, this abstraction collaborates with Sequenced Data, Sequenced
Packet, Data Reformer, Reformed Packet and Data Egester, and presents an interface of one Write contract, as shown in
Figure 66. The Write contract calls, in a loop, Sequenced Data, Data Reformer and Data Egester, to extract a sequenced
packet, reform it, and egest it. Since this abstraction fulfills its tasks in one call, it does not need to be persistent to work
correctly.

Figure 65 HIRDLS1 Data Abstraction

HIRDLS1
Data

Add
Get
IsFull
Size

Reformed Packet

Figure 66 Data Writer Abstraction

Data
Writer

Write
Sequenced Packet

Sequenced Data

Data Reformer

Data Egester

Reformed Packet

 37

20 Processor Package

The Processor package has the responsibility to encapsulate all abstractions necessary to process L0 data into L1 data. As
shown in Figure 1, this package is the highest-level package in the system, and has access to the Sequencer, Locator,
Calibrator, Writer, File, Service and Diagnostics packages. The only abstraction in this package is L1 Processor, and it is
detailed further in this section.

20.1 L1 Processor Abstraction

L1 Processor is a process abstraction, and has the responsibility to manage the processing of HIRDLS L0 data into HIRDLS
L1 data. To fulfill this responsibility, this abstraction collaborates with System Reporter, Data Sequencer, Sequenced Data,
Data Locator, Data Calibrator and Data Writer, and presents an interface of one Process contract, as shown in Figure 67. The
Process contract first instantiates a System Reporter abstraction, and then calls, in sequence: Data Sequencer, Data Locator,
Data Calibrator and Data Writer. Since this abstraction fulfills its tasks in one call, it does not need to be persistent to work
correctly.

Figure 67 L1 Processor Abstraction

L1
Processor

Process

System Reporter

Data Sequencer

Sequenced Data

Data Locator

Data Calibrator

Data Writer

A-1

Appendix A – Abstraction Interfaces

A.1 System Reporter

static system_reporter* GetReporter ()

~system_reporter ()

void Add (enum diagnostic_code code)
void Add (enum termination_code code, const string& message)

A.2 Diagnostic Manager

diagnostic_manager ()

~diagnostic_manager ()

static int const MAXIMUM_DIAGNOSTICS

void Add (enum diagnostic_code code)
bool Retrieve (enum diagnostic_code code, diagnostic_data& data) const

A.3 Diagnostic Data

diagnostic_data ()
diagnostic_data (const diagnostic_data& data)
diagnostic_data& operator= (const diagnostic_data& data)

~diagnostic_data ()

enum diagnostic_code {<the list of acceptable diagnostic codes>}

void Get (enum diagnostic_code& code, long& occurrences, string& message) const
void Set (enum diagnostic_code code, long occurrences, const string& message)
void Update ()

A.4 Termination Manager

termination_manager ()

~termination_manager ()

void Add (enum termination_code code, const string& message)
void Retrieve (termination_data& data) const

A.5 Termination Data

termination_data ()
termination_data (const termination_data& data)
termination_data& operator= (const termination_data& data)

~termination_data ()

enum termination_code {TERMINATION_NORMAL, TERMINATION_ABNORMAL}

void Get (enum termination_code& code, string& message) const
void Set (enum termination_code code, const string& message)

A-2

A.6 Constants Service

static int const CHANNEL_SIZE
static int const CHOPPERCYCLE_SIZE
static int const CHOPPERREV_SIZE
static int const MINORFRAME_SIZE
static int const MAXIMUM_MAJORFRAME_SIZE
static int const MAFREV_SIZE

static inline bool IsValidChannelIndex (int index)
static inline bool IsValidChopperCycleIndex (int index)
static inline bool IsValidChopperRevIndex (int index)
static inline bool IsValidMinorFrameIndex (int index)

A.7 HDF5 Service

hdf5_service ()

~hdf5_service ()

enum hdf5service_fieldtype {HDF5SERVICE_DATAFIELD, HDF5SERVICE_GEOFIELD}

bool CloseFile (long fileid) const
bool CloseSwath (long swathid) const
bool CreateFile (const string& filename, long& fileid) const
bool CreateSwath (long fileid, const string& swathname, long& swathid) const
bool DefineCompression (long swathid, int level, int count, const int dimensions[]) const
bool DefineDimension (long swathid, const string& name, long value) const
bool DefineField (enum hdf5service_fieldtype type, long fileid, const string& fieldname,
 const string& dimensionnames, char fillvalue, long& swathid) const
bool DefineField (enum hdf5service_fieldtype type, long fileid, const string& fieldname,
 const string& dimensionnames, short fillvalue, long& swathid) const
bool DefineField (enum hdf5service_fieldtype type, long fileid, const string& fieldname,
 const string& dimensionnames, int fillvalue, long& swathid) const
bool DefineField (enum hdf5service_fieldtype type, long fileid, const string& fieldname,
 const string& dimensionnames, long fillvalue, long& swathid) const
bool DefineField (enum hdf5service_fieldtype type, long fileid, const string& fieldname,
 const string& dimensionnames, float fillvalue, long& swathid) const
bool DefineField (enum hdf5service_fieldtype type, long fileid, const string& fieldname,
 const string& dimensionnames, double fillvalue, long& swathid) const
bool DefineField (enum hdf5service_fieldtype type, long fileid, const string& fieldname,
 const string& dimensionnames, unsigned short fillvalue, long& swathid)
 const
bool GetDimensionSize (long swathid, const string& name, long& size) const
bool GetFieldFillValue (long swathid, const string& name, void* value) const
bool OpenFile (const string& name, long& id) const
bool OpenSwath (long fileid, const string& name, long& id) const
bool ReadField (long swathid, const string& name, int rank, const long starts[],
 const long edges[], void* data) const
bool WriteAttribute (long fileid, const string& name, const string& value) const
bool WriteField (long swathid, const string& fieldname, int dimensioncount,
 const long starts[], const long edges[], const void* data) const

A.8 Time Conversion Service

static bool ConvertTAI58ToTAI93 (double tai58, double& tai93) const
static bool ConvertTAI93ToUTC (double tai93, string& utc) const
static bool ConvertUTCToJD (const string& utc, double& jd) const
static bool ConvertUTCToTAI93 (const string& utc, double& tai93) const

A-3

A.9 Missing Value Service

static inline double GetDoubleMissingValue ()
static inline float GetFloatMissingValue ()
static inline int GetIntMissingValue ()
static inline long GetLongMissingValue ()
static inline short GetShortMissingValue ()
static inline unsigned short GetUnsignedShortMissingValue ()
bool IsMissingValue (double value) const
bool IsMissingValue (float value) const
bool IsMissingValue (int value) const
bool IsMissingValue (long value) const
bool IsMissingValue (short value) const
bool IsMissingValue (unsigned short value) const

A.10 Program Abortion Service

static void Abort () const
static void Abort (const string& message) const

A.11 PCF Service

static bool GetFilename (int id, string& name) const
static bool GetFilename (int id, int version, string& name) const
static bool GetParameter (int id, string& parameter) const

A.12 Metadata Service

ecs_service (int datafilelogical, int ecsfilelogical)

~ecs_service ()

bool Set (const string& name, int value)
bool Set (const string& name, const void* value)
bool Set (const string& name, const string& value)
bool Write ()

A.13 Processor File

processor_file (int id)
processor_file (int id, int version)

~processor_file ()

inline int GetLogical () const
inline string GetName () const
inline bool IsValid () const

A.14 Binary File

binary_file (int id, int version)

~binary_file ()

void Close ()
bool Open ()
bool Read (int count, unsigned short words[])

A-4

A.15 ASCII File

ascii_file (int id)

~ascii_file ()

void Close ()
bool GetToken (const string& line, int number, double& value) const
bool GetToken (const string& line, int number, float& value) const
bool GetToken (const string& line, int number, int& value) const
bool GetToken (const string& line, int number, string& value) const
bool Open ()
bool Read (string& line)
bool Read (string& line, char commentchar)

A.16 HDF5 File

hdf5_file (int id, const string& swathname)

~hdf5_file ()

void Close ()
bool Create ()
bool DefineDimension (const string& name, long value)
bool DefineField (enum hdf5file_fieldtype type, const string& name,
 const string& dimensionnames)
bool DefineField (enum hdf5file_fieldtype type, const string& name,
 const string& dimensionnames, int compressiondimensioncount,
 int compressiondimensions[])
bool WriteAttribute (const string& name, const string& value)
bool WriteField (const string& name, int dimensions, const long starts[],
 const long edges[], const void* data)

A.17 HDF5 Read File

hdf5_readfile (int id, const string& swathname)

~hdf5_readfile ()

void Close ()
bool GetDimensionSize (const string& dimensionname, long& value) const
bool Open ()
bool ReadField (const string& name, int dimensions, const long start[], const long edge[],
 short& fillvalue, short* data) const
bool ReadField (const string& name, int dimensions, const long start[], const long edge[],
 float& fillvalue, float* data) const
bool ReadField (const string& name, int dimensions, const long start[], const long edge[],
 int& fillvalue, int* data) const
bool ReadField (const string& name, int dimensions, const long start[], const long edge[],
 double& fillvalue, double* data) const

A.18 Packet Ingester

packet_ingester ()

~packet_ingester ()

bool Ingest (hir0sci_packet& packet)

A-5

A.19 HIR0Sci File

static hir0sci_file* GetFile (int version)

~hir0sci_file ()

bool GetNextPacket (hir0sci_packet& packet)

A.20 HIR0Sci Packet

hir0sci_packet ()
hir0sci_packet (const hir0sci_packet& packet)
hir0sci_packet& operator= (const hir0sci_packet& packet)

~hir0sci_packet ()

static int const DATAWORDS_SIZE

inline int GetFramecount () const
inline int GetMif () const
inline int GetRDSR () const
inline int GetSHFI () const
void Get (unsigned short datawords[DATAWORDS_SIZE]) const
void GetAzimuth (int& primarycount, int& primaryoffset, int& secondarycount,
 int& secondaryoffset) const
void GetDiagnostic (int& count, int& offset) const
void GetElevation (int& primaryvarcount, int& primaryvaroffset, int& secondaryvarcount,
 int& secondaryvaroffset, int& primary2count, int& primary2offset,
 int& secondary2count, int& secondary2offset) const
void GetGyro (int& g0count, int& g0offset, int& g1count, int& g1offset, int& g2count,
 int& g2offset, int& g3count, int& g3offset) const
void GetHousekeeping (int& count, int& offset) const
void GetRadiance (int& count, int& offset) const
void GetTime (int& count, int& offset) const
void Set (const unsigned short datawords[DATAWORDS_SIZE])

A.21 Housekeeping Transformer

housekeeping_transformer ()

~housekeeping_transformer ()

bool Transform (const hir0sci_packet& packet, short& orbitfractionid, short& scanmirrorindex,
 short& scantable, int& scanmodeid, float& azimuthhousing1temp,
 float& azimuthhousing2temp, float& calmirror1temp, float& calmirror3temp,
 float& chopperfrequency, float& chopperhousing3temp, float& doormotortemp,
 float& focalplaneatemp, float& focalplanebtemp, float& hotwaxactuatortemp,
 float& ifcfrontplatetemp, float& lens13temp, float& lens23temp,
 float& lensassembly1temp, float& lensassembly2temp, float& mirror13temp,
 float& mirror22temp, float& opticalbenchplatetemp, float& opticalbench2temp,
 float& opticalbench6temp, float& opticalbench7temp, float& scanmirror3temp,
 float& smamountringtemp, float& spacemirror3temp, float& sundoorangle,
 float& sundoortemp, float& sundooraperturetemp,
 float& sundoornegzsurfacetemp, float& sundoorposzsurfacetemp,
 float& sunsensor1temp, float& sunsensor2temp, float& sunsensor3temp,
 short signaloffsets[constants_service::CHANNEL_SIZE])

A-6

A.22 Housekeeping File

static housekeeping_file* GetFile (int shfi, int id)

~housekeeping_file ()

bool Read (housekeeping_data& data)

A.23 Housekeeping Data

housekeeping_data ()
housekeeping_data (const housekeeping_data& data)
housekeeping_data& operator= (const housekeeping_data& data)

~housekeeping_data ()

static int const ALL_MINORFRAME
static int const COEFFS_MAXSIZE

enum housekeeping_code {<the list of acceptable housekeeping codes>}

void Get (int& shfi, int& minorframe, enum housekeeping_code& code) const
void Get (int& bits, int& order, int& offset, double& converter,
 double coeffs[COEFFS_MAXSIZE]) const
void Get (int& shfi, int& bits, int& order, int& offset, int& minorframe, double& converter,
 double coeffs[COEFFS_MAXSIZE], enum housekeeping_code& code) const
void Set (int shfi, int bits, int order, int offset, int minorframe, double converter,
 const double coeffs[COEFFS_MAXSIZE], enum housekeeping_code code)

A.24 Data Transformer

data_transformer ()

~data_transformer ()

bool Transform (const hir0sci_packet& hir0scipacket, transformed_packet& transformedpacket)

A.25 Azimuth Transformer

azimuth_transformer ()

~azimuth_transformer ()

bool Transform (const hir0sci_packet& packet, double
angles[constants_service::CHOPPERREV_SIZE]) const

A.26 Radiance Transformer

radiance_transformer ()

~radiance_transformer ()

bool Transform (const hir0sci_packet& packet, bool activity[constants_service::CHANNEL_SIZE],
 long signals[constants_service::CHANNEL_SIZE]
 [constants_service::CHOPPERREV_SIZE]
 [constants_service::CHOPPERCYCLE_SIZE]) const

A-7

A.27 Elevation Transformer

elevation_transformer ()

~elevation_transformer ()

bool Transform (const hir0sci_packet& packet, double
angles[constants_service::CHOPPERREV_SIZE]) const

A.28 Time Transformer

time_transformer ()

~time_transformer ()

bool Transform (const hir0sci_packet& packet,
 double hirdlstimes[constants_service::CHOPPERREV_SIZE],
 double tai93times[constants_service::CHOPPERREV_SIZE]) const

A.29 Transformed Data

transformed_data ()

~transformed_data ()

void Add (const transformed_packet& packet)
bool GetNext (transformed_packet& packet)

A.30 Transformed Packet

transformed_packet ()
transformed_packet (const transformed_packet& packet)
transformed_packet& operator= (const transformed_packet& packet)

~transformed_packet ()

inline short GetMif () const
inline short GetScanTable () const
inline double GetStartTime () const
inline double GetStopTime () const
void Get (int revindex, double& shaftangleazimuth, double& shaftangleelevation,
 double& hirdlstime, double& taitime) const
void Get (int revindex, short& framecount, short& orbitfractionid, short& scanmirrorindex,
 short& scantable, int& scanmodeid, float& azimuthhousing1temp,
 float& azimuthhousing2temp, float& calmirror1temp, float& calmirror3temp,
 float& chopperfrequency, float& chopperhousing3temp, float& doormotortemp,
 float& focalplaneatemp, float& focalplanebtemp, float& hotwaxactuatortemp,
 float& ifcfrontplatetemp, float& lens13temp, float& lens23temp,
 float& lensassembly1temp, float& lensassembly2temp, float& mirror13temp,
 float& mirror22temp, float& opticalbenchplatetemp, float& opticalbench2temp,
 float& opticalbench6temp, float& opticalbench7temp, float& scanmirror3temp,
 float& smamountringtemp, float& spacemirror3temp, float& sundoorangle,
 float& sundoortemp, float& sundooraperturetemp, float& sundoornegzsurfacetemp,
 float& sundoorposzsurfacetemp, float& sunsensor1temp, float& sunsensor2temp,
 float& sunsensor3temp, double& shaftangleazimuth, double& shaftangleelevation,
 double& hirdlstime, double& tai93time,
 bool signalactivity[constants_service::CHANNEL_SIZE],
 short signaloffsets[constants_service::CHANNEL_SIZE],
 int signals[constants_service::CHANNEL_SIZE]) const
void Get (short& mif, short& framecount, short& orbitfractionid, short& scanmirrorindex,
 short& scantable, int& scanmodeid, float& azimuthhousing1temp,

A-8

 float& azimuthhousing2temp, float& calmirror1temp, float& calmirror3temp,
 float& chopperfrequency, float& chopperhousing3temp, float& doormotortemp,
 float& focalplaneatemp, float& focalplanebtemp, float& hotwaxactuatortemp,
 float& ifcfrontplatetemp, float& lens13temp, float& lens23temp,
 float& lensassembly1temp, float& lensassembly2temp, float& mirror13temp,
 float& mirror22temp, float& opticalbenchplatetemp, float& opticalbench2temp,
 float& opticalbench6temp, float& opticalbench7temp, float& scanmirror3temp,
 float& smamountringtemp, float& spacemirror3temp, float& sundoorangle,
 float& sundoortemp, float& sundooraperturetemp, float& sundoornegzsurfacetemp,
 float& sundoorposzsurfacetemp, float& sunsensor1temp, float& sunsensor2temp,
 float& sunsensor3temp,
 double shaftangleazimuths[constants_service::CHOPPERREV_SIZE],
 double shaftangleelevations[constants_service::CHOPPERREV_SIZE],
 double hirdlstimes[constants_service::CHOPPERREV_SIZE],
 double tai93times[constants_service::CHOPPERREV_SIZE],
 bool signalactivity[constants_service::CHANNEL_SIZE],
 short signaloffsets[constants_service::CHANNEL_SIZE],
 int signals[constants_service::CHANNEL_SIZE][constants_service::CHOPPERREV_SIZE])
 const
void Set (short mif, short framecount, short orbitfractionid, short scanmirrorindex,
 short scantable, int scanmodeid, float azimuthhousing1temp,
 float azimuthhousing2temp, float calmirror1temp, float calmirror3temp,
 float chopperfrequency, float chopperhousing3temp, float doormotortemp,
 float focalplaneatemp, float focalplanebtemp, float hotwaxactuatortemp,
 float ifcfrontplatetemp, float lens13temp, float lens23temp,
 float lensassembly1temp, float lensassembly2temp, float mirror13temp,
 float mirror22temp, float opticalbenchplatetemp, float opticalbench2temp,
 float opticalbench6temp, float opticalbench7temp, float scanmirror3temp,
 float smamountringtemp, float spacemirror3temp, float sundoorangle,
 float sundoortemp, float sundooraperturetemp, float sundoornegzsurfacetemp,
 float sundoorposzsurfacetemp, float sunsensor1temp, float sunsensor2temp,
 float sunsensor3temp,
 const double shaftangleazimuths[constants_service::CHOPPERREV_SIZE],
 const double shaftangleelevations[constants_service::CHOPPERREV_SIZE],
 const double hirdlstimes[constants_service::CHOPPERREV_SIZE],
 const double tai93times[constants_service::CHOPPERREV_SIZE],
 const bool signalactivity[constants_service::CHANNEL_SIZE],
 const short signaloffsets[constants_service::CHANNEL_SIZE],
 const int signals[constants_service::CHANNEL_SIZE]
 [constants_service::CHOPPERREV_SIZE]) const

A.31 Data Flagger

data_flagger ()

~data_flagger ()

bool Flag (const transformed_data& transformeddata, flagged_data& flaggeddata)

A.32 STXX Flagger

stxx_flagger ()

~stxx_flagger ()

bool Flag (short previousscantable, double previousazimuthangle,
 double previouspreviouselevationangle, double previouselevationangle,
 double thisazimuthangle, double thiselevationangle, bool& isnominal,
 bool& iskapton, bool& isatmosphere, bool& isazimuthslew, bool& isstare,
 bool& isscanningup, bool& isscanningdown, bool& isscanningright,
 bool& isscanningleft)

A-9

A.32 ST00 Flagger

st00_flagger ()

~st00_flagger ()

inline bool AzimuthMoving (double angle1, double angle2) const
inline bool HasVaidAtmosphericAzimuthAngle (double angle) const
inline bool HasValidKaptonAzimuthAngle (double angle) const
inline bool HasValidNominalScanAzimuthAngle (double angle) const
inline bool ElevationMonotonic (double prepreangle, double preangle, double thisangle) const
inline bool ElevationMoving (double angle1, double angle2) const
inline bool IsScanningDown (double preelevationangle, double thiselevationangle) const
inline bool IsScanningLeft (double preazimuthangle, double thisazimuthangle) const
inline bool IsScanningRight (double preazimuthangle, double thisazimuthnangle) const
inline bool IsScanningUp (double preelevationangle, double thiselevationangle) const
inline bool HasValidElevationAcceleration (double acceleration) const
inline bool HasValidElevationAngle (double angle) const
inline bool HasValidElevationVelocity (double angle1, double angle2) const
inline bool HasValidElevationVelocity (double velocity) const
bool HasValidElevationMovement (double prepreangle, double preangle, double thisangle) const
bool Flag (short previousscantable, double previousazimuthangle,
 double previouspreviouselevationangle, double previouselevationangle,
 double thisazimuthangle, double thiselevationangle, bool& isnominal,
 bool& iskapton, bool& isatmosphere, bool& isazimuthslew, bool& isstare,
 bool& isscanningup, bool& isscanningdown, bool& isscanningright,
 bool& isscanningleft)

A.33 Flagger Creator

static st00_flagger* Create (short scantable)

A.34 Flagged Packet

flagged_packet ()
flagged_packet (const flagged_packet& packet)
flagged_packet& operator= (const flagged_packet& packet)

~flagged_packet ()

inline double GetHIRDLSTime () const
inline double GetTAITime () const
inline short GetScanTable () const
inline short GetSequenceIndex () const
inline bool IsNominal () const
inline bool IsProcessable () const
inline bool IsUpscan () const
inline void SetNominality (bool nominality)
void Get (bool& isnominal, bool& iskapton, bool& isatmosphere, bool& isazimuthslew,
 bool& isstare, bool& isscanningup, bool& isscanningdown, bool& isscanningright,
 bool& isscanningleft) const
void Get (short& sequenceindex, short& scantable, double& hirdlstime, double& taitime,
 bool& isnominal, bool& iskapton, bool& isatmosphere, bool& isazimuthslew,
 bool& isstare, bool& isscanningup, bool& isscanningdown, bool& isscanningright,
 bool& isscanningleft, bool& isprocessable) const
void Set (short sequenceindex, short scantable, double hirdlstime, double taitime,
 bool isnominal, bool iskapton, bool isatmosphere, bool isazimuthslew,
 bool isstare, bool isscanningup, bool isscanningdown, bool isscanningright,
 bool isscanningleft, bool isprocessable)

A-10

A.35 Flagged Data

flagged_data ()

~flagged_data ()

inline int GetSize () const
inline double GetHIRDLSTime (int index) const
inline double GetTAITime (int index) const
inline short GetScanTable (int index) const
inline bool IsNominal (int index) const
inline bool IsUpscan (int index) const
inline void SetNominality (int index, bool nominality)
void Add (const flagged_packet& packet)
void GetNext (flagged_packet& packet)

A.36 Sequence Builder

sequence_builder ()

~sequence_builder ()

bool Build (const transformed_data& transformeddata, const flagged_data& flaggeddata,
 sequenced_data& sequenceddata)

A.37 Sequenced Data

sequenced_data ()

~sequenced_data ()

inline int GetSize () const
void Add (const sequenced_packet& packet)
void Get (int index, sequenced_packet& packet)
void Update (int index, const sequenced_packet& packet)

A.38 Sequenced Packet

sequenced_packet ()
sequenced_packet (const sequenced_packet& packet)
sequenced_packet& operator= (const sequenced_packet& packet)

~sequenced_packet ()

inline int GetSize () const
inline bool IsFull () const
inline short GetScanNumber () const
void Get (int index, double& azimuthangle, double& elevationangle, double& taitime) const
void Get (int index, float& chopperhousingtemp, float& mirror1temp, float& scanmirrortemp,
 float& spacemirrortemp, bool signalactivity[constants_service::CHANNEL_SIZE],
 short signaloffsets[constants_service::CHANNEL_SIZE],
 int signals[constants_service::CHANNEL_SIZE]) const
void Get (short& framecount, short& orbitfractionid, short& scanmirrorindex,
 short& scantable, int& scanmodeid, float& azimuthhousing1temp,
 float& azimuthhousing2temp, float& calmirror1temp, float& calmirror3temp,
 float& chopperfrequency, float& chopperhousing3temp, float& doormotortemp,
 float& focalplaneatemp, float& focalplanebtemp, float& hotwaxactuatortemp,
 float& ifcfrontplatetemp, float& lens13temp, float& lens23temp,
 float& lensassembly1temp, float& lensassembly2temp, float& mirror13temp,
 float& mirror22temp, float& opticalbenchplatetemp, float& opticalbench2temp,
 float& opticalbench6temp, float& opticalbench7temp, float& scanmirror3temp,

A-11

 float& smamountringtemp, float& spacemirror3temp, float& sundoorangle,
 float& sundoortemp, float& sundooraperturetemp, float& sundoornegzsurfacetemp,
 float& sundoorposzsurfacetemp, float& sunsensor1temp, float& sunsensor2temp,
 float& sunsensor3temp, float& solarbetaangle,
 bool nominal[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 bool atmosphere[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 bool kapton[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 bool azimuthslew[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 bool stare[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 bool scanningup[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 bool scanningdown[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 bool scanningleft[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 bool scanningright[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 bool spacecraftinshadow[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 bool mooninfov[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 bool marsinfov[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 bool venusinfov[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 bool jupiterinfov[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 bool signalactivity[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE],
 short scannumber[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 int auraorbitnumber[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float solarzenithangle[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float solarazimuthangle[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float spacecraftlatitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float spacecraftlongitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float spacecraftsolarelevation[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float tangentpointazimuth[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float tangentpointlatitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float tangentpointlongitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float radiometricgain[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float radiometricoffset[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 double shaftangleazimuth[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 double shaftangleelevation[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 double tai93time[constants_service::MINORFRAME_SIZE]

A-12

 [constants_service::CHOPPERREV_SIZE],
 double fovrotation[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 double localsolartime[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 double losazimuth[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 double loselevation[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 double spacecraftaltitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 double tangentpointaltitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 double nearestraypoint[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE][3],
 double nearestsurfacepoint[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE][3],
 double spacecrafteciposition[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE][3],
 double spacecraftecrposition[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE][3],
 double tangentpointaltitudeoffset[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 double radiance[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 double radianceerror[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE]) const
void Set (short framecount, short orbitfractionid, short scanmirrorindex,
 short scantable, int scanmodeid, float azimuthhousing1temp,
 float azimuthhousing2temp, float calmirror1temp, float calmirror3temp,
 float chopperfrequency, float chopperhousing3temp, float doormotortemp,
 float focalplaneatemp, float focalplanebtemp, float hotwaxactuatortemp,
 float ifcfrontplatetemp, float lens13temp, float lens23temp,
 float lensassembly1temp, float lensassembly2temp, float mirror13temp,
 float mirror22temp, float opticalbenchplatetemp, float opticalbench2temp,
 float opticalbench6temp, float opticalbench7temp, float scanmirror3temp,
 float smamountringtemp, float spacemirror3temp, float sundoorangle,
 float sundoortemp, float sundooraperturetemp, float sundoornegzsurfacetemp,
 float sundoorposzsurfacetemp, float sunsensor1temp, float sunsensor2temp,
 float sunsensor3temp, float solarbetaangle,
 const bool nominal[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const bool atmosphere[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const bool kapton[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const bool azimuthslew[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const bool stare[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const bool scanningup[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const bool scanningdown[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const bool scanningleft[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const bool scanningright[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const bool spacecraftinshadow[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const bool mooninfov[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],

A-13

 const bool marsinfov[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const bool venusinfov[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const bool jupiterinfov[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const bool signalactivity[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE],
 const short scannumber[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const int auraorbitnumber[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float solarzenithangle[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float solarazimuthangle[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float spacecraftlatitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float spacecraftlongitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float spacecraftsolarelevation[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float tangentpointazimuth[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float tangentpointlatitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float tangentpointlongitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float radiometricgain[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float radiometricoffset[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const double shaftangleazimuth[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const double shaftangleelevation[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const double tai93time[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const double fovrotation[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const double localsolartime[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const double losazimuth[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const double loselevation[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const double spacecraftaltitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const double tangentpointaltitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const double nearestraypoint[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE][3],
 const double nearestsurfacepoint[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE][3],
 const double spacecrafteciposition[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE][3],
 const double spacecraftecrposition[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE][3],
 const double tangentpointaltitudeoffset[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const double radiance[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE]

A-14

 [constants_service::CHOPPERREV_SIZE],
 const double radianceerror[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE]) const
void Update (int index, const float radiometricgain[constants_service::CHANNEL_SIZE],
 const float radiometricoffset[constants_service::CHANNEL_SIZE],
 const double radiance[constants_service::CHANNEL_SIZE],
 const double radianceerror[constants_service::CHANNEL_SIZE])
void Update (int index, bool spacecraftinshadow, bool mooninfov, bool marsinfov,
 bool venusinfov, bool jupiterinfov, int auraorbitnumber, float solarbetaangle,
 float solarazimuthangle, float solarzenithangle, float spacecraftlatitude,
 float spacecraftlongitude, float spacecraftsolarelevation,
 float tangentpointazimuth, float tangentpointlatitude,
 float tangentpointlongitude, double fovrotation, double localsolartime,
 double losazimuth, double loselevation, double spacecraftaltitude,
 double tangentpointaltitude, const double nearestraypoint[3],
 const double nearestsurfacepoint[3], const double spacecrafteciposition[3],
 const double spacecraftecrposition[3],
 const double tangentpointaltitudeoffset[constants_service::CHANNEL_SIZE])

A.40 Data Sequencer

data_sequencer ()

~data_sequencer ()

bool Sequence (sequenced_data& sequenceddata)

A.41 Geolocation Service

static double const DEGREES_TO_RADIANS
static double const RADIANS_TO_DEGREES
static double const PI

static void ComputeSolarPositions (double jdtime, double& declination,
 double& rightascension)
static bool GetAltitude (const double ecrdetectorunitposition[3],
 const double ecrspacecraftposition[3], double& altitude)
static bool GetAttitudeAndEphemeris (const string& utctime, double spacecraftposition[3],
 double spacecraftvelocity[3])
static bool GetAzimuth (const double ecrboresight[3], double latitude, double longitude,
 double altitude, double& azimuth)
static bool GetFOVContaminants (const string& utctime, const double fovvector[3],
 const double perimetervectors[4][3], bool& mooninfov,
 bool& marsinfov, bool& venusinfov, bool& jupiterinfov)
static bool GetGrazingRay (const double ecrboresight[3], const double ecrposition[3],
 double& latitude, double& longitude, double& altitude,
 double nearestraypoint[3], double nearestsurfacepoint[3])
static bool GetOrbitNumber (const string& utctime, int& orbitnumber)
static bool GetQuaternion (const string& utctime, double quaternion[3][3])
static bool GetSlantRange (const double ecrboresight[3], const double ecrspacecraft[3],
 double& slantrange)
static bool GetSolarBetaAngle (const string& utctime, const double ecispacecraftposition[3],
 const double ecispacecraftvelocity[3], double& solarbetaangle)
static bool GetSubSatellitePoint (const string& utctime, double& latitude, double& longitude,
 double& altitude)
static void GetUnitVector (const double vector[3], double unitvector[3])

A-15

A.42 Matrix Service

static void Multiply (const double matrix1[3][3], const double matrix2[3][3],
 double result[3][3])
static void Multiply (const double matrix[3][3], const double vector[3], double result[3])
static void Transpose (const double matrix[3][3], double result[3][3])

A.43 Data Locator

data_locator ()

~data_locator ()

bool Locate (sequenced_data& sequenceddata)

A.44 Celestial Body Locator

celestialbody_locator ()

~celestialbody_locator ()

bool Locate (const string& utctime, const double rotationmatrix[3][3], bool& mooninfov,
 bool& marsinfov, bool& venusinfov, bool& jupiterinfov) const

A.45 Channel Offset Locator

channeloffset_locator ()

~channeloffset_locator ()

bool Locate (const string& utctime, double fovrotation, const double rotationmatrix[3][3],
 const double ecrspacecraftposition[3],
 double offsets[constants_service::CHANNEL_SIZE]) const

A.46 LOS Locator

los_locator ()

~los_locator ()

bool Locate (const string& utctime, const double eciboresightposition[3], double& azimuth,
 double& elevation) const

A.47 Spacecraft Locator

spacecraft_locator ()

~spacecraft_locator ()

bool Locate (const string& utctime, double& latitude, double& longitude, double& altitude,
 double& solarelevationangle, bool& inearthshadow, double eciposition[3],
 double ecivelocity[3], double ecrposition[3]) const

A-16

A.48 Tangent Point Locator

tangentpoint_locator ()

~tangentpoint_locator ()

bool Locate (const string& utctime, const double ecrspacecraftposition[3],
 const double eciboresightunitvector[3], double& altitude, double& azimuth,
 double& latitude, double& longitude, double& localsolartime,
 double& solarzenithangle, double& solarazimuthangle,
 double nearesteciraypoint[3], double nearestecisurfacepoint[3]) const

A.49 Offset Generator

radiometricoffset_generator ()

~radiometricoffset_generator ()

bool Generate (float chopperhousingtemp, float mirror1temp, float scanmirrortemp,
 float spacemirrortemp,
 const short signaloffset[constants_service::CHANNEL_SIZE],
 const float radiometricgain[constants_service::CHANNEL_SIZE],
 float radiometricoffset[constants_service::CHANNEL_SIZE]) const

A.50 Flux Data

flux_data ()
flux_data (const flux_data& data)
flux_data& operator= (const flux_data& data)

~flux_data ()

static int const FLUX_SIZE

void Get (int& fluxsize, int temperatures[FLUX_SIZE],
 double flux[FLUX_SIZE][constants_service::CHANNEL_SIZE]) const
void Set (int fluxsize, const int temperatures[FLUX_SIZE],
 const double flux[FLUX_SIZE][constants_service::CHANNEL_SIZE])

A.51 Flux File

static flux_file* GetFile ()

~flux_file ()

bool Read (flux_data& data)

A.52 OOF Corrector

oof_corrector ()

~oof_corrector ()

bool Correct (const bool signalactivity[constants_service::CHANNEL_SIZE],
 const int signals[constants_service::CHANNEL_SIZE],
 int correctedsignals[constants_service::CHANNEL_SIZE]) const

A-17

A.53 Correction Data

correction_data ()
correction_data (const correction_data& data)
correction_data& operator= (const correction_data& data)

~correction_data ()

void Get (float weights[constants_service::CHANNEL_SIZE][constants_service::CHANNEL_SIZE)
 const
void Set (const float weights[constants_service::CHANNEL_SIZE]
 [constants_service::CHANNEL_SIZE)

A.54 Correction File

static correction_file* GetFile ()

~correction_file ()

bool Read (correction_data& data)

A.55 Data Calibrator

data_calibrator ()

~data_calibrator ()

bool Calibrate (sequenced_data& sequenceddata)

A.56 Calibration Data

calibration_data ()
calibration_data (const calibration_data& data)
calibration_data& operator= (const calibration_data& data)

~calibration_data ()

void Get (float gains[constants_service::CHANNEL_SIZE],
 float kterms[constants_service::CHANNEL_SIZE],
 float calmirroremissivities[constants_service::CHANNEL_SIZE],
 float chopperemissivities[constants_service::CHANNEL_SIZE]) const
void Set (const float gains[constants_service::CHANNEL_SIZE],
 const float kterms[constants_service::CHANNEL_SIZE],
 const float calmirroremissivities[constants_service::CHANNEL_SIZE],
 const float chopperemissivities[constants_service::CHANNEL_SIZE])

A.57 Calibration File

static parameter_file* GetFile ()

~calibration_file ()

bool Read (calibration_data& data)

A-18

A.58 Data Reformer

data_reformer ()

~data_reformer ()

bool Reform (const sequenced_packet& sequencedpacket, reformed_packet& reformedpacket)

A.59 Reformed Packet

reformed_packet ()
reformed_packet (const reformed_packet& packet)
reformed_packet& operator= (const reformed_packet& packet)

~reformed_packet ()

void Get (short& orbitposition, short& scantable, short& scanmirrorindex,
 short& solarazangle, short& solarzenangle, short& viewdirection,
 short& chopperperiod, short& framecounter, int& scanmodeid, float& solarbetaangle,
 float& azhousingtemp, float& calmirror1temp, float& calmirror3temp,
 float& chopperhousingtemp, float& doormotortemp, float& focalplaneatemp,
 float& focalplanebtemp, float& hotwaxactuatortemp, float& ifcfrontplatetemp,
 float& lens2temp, float& lenshousingtemp, float& mirror1temp, float& mirror2temp,
 float& opticalbenchplatetemp, float& opticalbench2temp, float& opticalbench6temp,
 float& opticalbench7temp, float& scanmirrortemp, float& smamountringtemp,
 float& spacemirrortemp, float& sundoornegzsurfacetemp,
 float& sundoorposzsurfacetemp, float& sundooraperturetemp, float& sundoorangle,
 float& sundoortemp, float& sunsensor1temp, float& sunsensor2temp,
 float& sunsensor3temp, int scecrposition[3],
 int orbitnumber[constants_service::MINORFRAME_SIZE],
 float radscaleoffset[constants_service::CHANNEL_SIZE],
 float radscalefactor[constants_service::CHANNEL_SIZE],
 float radgain[constants_service::CHANNEL_SIZE],
 float radoffset[constants_service::CHANNEL_SIZE],
 short azlosangle[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 short fieldrotation[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 short scannumber[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 int altitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 int flags[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 int localsolartime[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 int ellosangle[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 int spacecraftalt[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float azshaftangle[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float elshaftangle[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float latitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float longitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float scsolarelangle[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float spacecraftlat[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 float spacecraftlon[constants_service::MINORFRAME_SIZE]

A-19

 [constants_service::CHOPPERREV_SIZE],
 double taitime[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 short raderror[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE],
 int nearestraypoint[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE][3],
 int nearestsurfacepoint[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE][3],
 int sceciposition[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE][3],
 short altitudeoffset[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 unsigned short radiance[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE]) const
void Set (short orbitposition, short scantable, short scanmirrorindex,
 short solarazangle, short solarzenangle, short viewdirection,
 short chopperperiod, short framecounter, int scanmodeid, float solarbetaangle,
 float azhousingtemp, float calmirror1temp, float calmirror3temp,
 float chopperhousingtemp, float doormotortemp, float focalplaneatemp,
 float focalplanebtemp, float hotwaxactuatortemp, float ifcfrontplatetemp,
 float lens2temp, float lenshousingtemp, float mirror1temp, float mirror2temp,
 float opticalbenchplatetemp, float opticalbench2temp, float opticalbench6temp,
 float opticalbench7temp, float scanmirrortemp, float smamountringtemp,
 float spacemirrortemp, float sundoornegzsurfacetemp,
 float sundoorposzsurfacetemp, float sundooraperturetemp, float sundoorangle,
 float sundoortemp, float sunsensor1temp, float sunsensor2temp,
 float sunsensor3temp, const int scecrposition[3],
 const int orbitnumber[constants_service::MINORFRAME_SIZE],
 const float radscaleoffset[constants_service::CHANNEL_SIZE],
 const float radscalefactor[constants_service::CHANNEL_SIZE],
 const float radgain[constants_service::CHANNEL_SIZE],
 const float radoffset[constants_service::CHANNEL_SIZE],
 const short azlosangle[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const short fieldrotation[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const short scannumber[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const int altitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const int flags[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const int localsolartime[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const int ellosangle[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const int spacecraftalt[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float azshaftangle[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float elshaftangle[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float latitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float longitude[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float scsolarelangle[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float spacecraftlat[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const float spacecraftlon[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],

A-20

 const double taitime[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const short raderror[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE],
 const int nearestraypoint[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE][3],
 const int nearestsurfacepoint[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE][3],
 const int sceciposition[constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE][3],
 const short altitudeoffset[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE],
 const unsigned short radiance[constants_service::CHANNEL_SIZE]
 [constants_service::MINORFRAME_SIZE]
 [constants_service::CHOPPERREV_SIZE])

A.60 Data Egester

data_egester ()

~data_egester ()

bool Egest (const reformed_packet& reformedpacket)

A.61 HIRDLS1 File

static l1b_file* GetFile ()

~l1b_file ()

bool WriteNext (const hirdls1_data& hirdls1data)

A.62 HIRDLS1 Data

hirdls1_data ()
hirdls1_data (const hirdls1_data& data)
hirdls1_data& operator= (const hirdls1_data& data)

~hirdls1_data ()

static int const MAJORFRAME_WRITESIZE

enum hirdls1data_code {<the list of acceptable hirdls1 data codes>}

inline bool IsFull () const
inline int Size () const

void Add (const reformed_packet& reformedpacket)
const void* Get (enum hirdls1data_code) const

A.63 Data Writer

data_writer ()

~data_writer ()

bool Write (const sequenced_data& sequenceddata)

A-21

A.64 L1 Processor

l1_processor ()

~l1_processor ()

void Process ()

