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Retrieval of Atmospheric and Surface Parameters
From AIRS/AMSU/HSB Data in the

Presence of Clouds
Joel Susskind, Christopher D. Barnet, and John M. Blaisdell

Abstract—New state-of-the-art methodology is described to
analyze the Atmospheric Infrared Sounder/Advanced Microwave
Sounding Unit/Humidity Sounder for Brazil (AIRS/AMSU/HSB)
data in the presence of multiple cloud formations. The method-
ology forms the basis for the AIRS Science Team algorithm,
which will be used to analyze AIRS/AMSU/HSB data on the
Earth Observing System Aqua platform. The cloud-clearing
methodology requires no knowledge of the spectral properties of
the clouds. The basic retrieval methodology is general and extracts
the maximum information from the radiances, consistent with
the channel noise covariance matrix. The retrieval methodology
minimizes the dependence of the solution on the first-guess field
and the first-guess error characteristics. Results are shown for
AIRS Science Team simulation studies with multiple cloud forma-
tions. These simulation studies imply that clear column radiances
can be reconstructed under partial cloud cover with an accuracy
comparable to single spot channel noise in the temperature and
water vapor sounding regions; temperature soundings can be
produced under partial cloud cover with RMS errors on the order
of, or better than, 1 K in 1-km-thick layers from the surface to
700 mb, 1-km layers from 700–300 mb, 3-km layers from 300–30
mb, and 5-km layers from 30–1 mb; and moisture profiles can
be obtained with an accuracy better than 20% absolute errors in
1-km layers from the surface to nearly 200 mb.

Index Terms—Infrared measurements, inverse problems,
iterative methods, linear approximation, matrices, microwave
measurements, moisture measurements, remote sensing, satellites,
temperature measurement.

I. INTRODUCTION

T HE ATMOSPHERIC Infrared Sounder (AIRS) is a high
spectral resolution ( ) infrared sounder, with

2378 channels covering the spectral domain 650–2675 cm,
which was launched on the Earth Observing System (EOS)
Aqua platform on May 4, 2002, accompanied by the Advanced
Microwave Sounding Unit A (AMSU-A) and the Humidity
Sounder for Brazil (HSB), the HSB being similar to AMSU-B.
The AIRS footprint is 13 km at nadir, as is the HSB footprint,
with a 3 3 array of AIRS and HSB footprints falling into
a single AMSU-A footprint. Spectral and radiometric charac-
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teristics of the AIRS instrument are given in [18]. The results
shown in this paper are based on simulated data. A preliminary
assessment of AIRS data shows excellent spectral and radio-
metric performance. It takes many months to stabilize the AIRS
instrument after launch and then to properly characterize the
channel spectral response functions in space. Retrievals using
actual AIRS data will not be produced operationally until one
year after launch.

Susskind et al. [23], described the first version of the
methodology used by the AIRS Science team to analyze
AIRS/AMSU/HSB data in the presence of clouds to deter-
mine surface skin temperature, surface spectral emissivity
and bidirectional reflectance, atmospheric temperature–mois-
ture–ozone profile, and the heights and amounts of different
layers of clouds in the fields of view (FOVs). Two important
characteristics of the basic retrieval methodology are that
no assumptions are needed about the spectral properties of
the clouds and no assumptions are needed about the intrinsic
accuracy of the first guess field used to start the iterative
process. This paper describes further theoretical improvements
in the retrieval and cloud-clearing methodology incorporated
in the current version of the AIRS Science team algorithm,
which will be used to analyze AIRS/AMSU/HSB data on
the EOS Aqua platform. The following sections will describe
the basic methodology used to estimate cloud-cleared AIRS
radiances, which are subsequently used to retrieve surface and
atmospheric geophysical parameters other than cloud param-
eters as well as to derive the effects of clouds on the channel
noise covariance matrix; describe the inversion methodology,
which makes strong use of the channel noise covariance matrix
and is applicable to solving for all the geophysical parameters
including cloud parameters; and show sample results from
AIRS Science Team simulations.

II. CLOUD-CLEARING METHODOLOGY

Clouds have a significant effect on observed infrared radi-
ances, and can have smaller but non negligible effects on mi-
crowave observations as well. Therefore, an accurate treatment
of the effects of clouds on the observed AIRS radiances is crit-
ical to obtaining accurate soundings. There are three basic ap-
proaches for treating cloud effects on the infrared (IR) obser-
vations: look for clear spots and therefore avoid the problem;
attempt to solve for the radiative effects of clouds directly in
the inversion process; and attempt to infer what the radiances in
the clear portions of the scene would be, called clear column
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radiances, from observations in a number of adjacent FOVs.
An example of the first approach is given in [6]. Eyre [7], [9]
has used the second approach in simulation by assuming an un-
known homogeneous amount of black clouds at an unknown
pressure, and attempted it with real TOVS data as well [8]. Our
approach, like that used in [24], is of the third type and is an ex-
tension of that used in [3], [4], and [21]. The advantage of this
approach is that it does not have the clear-sky sampling bias of
the first approach, nor does it require the ability to accurately
model the spectral emissive, reflective, and transmissive prop-
erties of the clouds, and their dependence on the vertical micro-
physics and geometry, as required by the second approach. The
key assumption made in the third approach is that while there
may be many types of clouds in the different FOVs, the radia-
tive properties of a given type of cloud are identical in all FOVs,
which differ only in the relative amounts of these cloud types.
Fields of view containing clouds with the same optical proper-
ties but at different heights, or clouds at the same height but with
different optical properties, can be considered as having mul-
tiple cloud types. The other key assumption of this approach is
that the FOVs have the same characteristics in the clear portions
of their scenes, with unknown temperatures, humidities, etc. that
we are trying to solve for. We have used analogous assumptions
in analyzing 23 years of TOVS data on board the NOAA op-
erational satellites [24] and shown that retrieval accuracy does
not degrade appreciably with increasing cloud cover [2]. Anal-
ogous assumptions are made by NOAA/NESDIS in production
of their clear column radiances used in generation of operational
HIRS2/MSU retrievals [17].

Using these assumptions, Chahine [4] has shown that in the
case of cloud formations, observations in FOVs are
needed to obtain channelclear column radiances according
to

(1)

where is the channel observation in FOV . We have
found it is advantageous (as suggested by L. McMillin) to ex-
trapolate the radiances in the FOVs according to a similar
equation of the form

(2)

where is the average radiance of all FOVs. Optimal
values of will give true values of up to instrumental noise
effects.

Cloud formations should be distinguished from cloud types.
For example, if three FOVs are considered, and two cloud types
exist, with cloud top pressures at 300 mb and 700 mb, and the
respective cloud fractions as seen from above are (10%, 20%),
(20%, 40%), and (30%, 60%) in each FOV, then only a single
cloud formation exists with cloud fractions of 30%, 60%, and
90% in each FOV, respectively. If instead, the third FOV had
cloud fractions of 30% and 65%, then 5% of a second cloud
formation exists in the third FOV only. The above discussion
applies only to cases in which the upper cloud type is opaque,

and a portion of the scene, as observed from above, corresponds
to cloud type 1, cloud type 2, or the surface. If the upper cloud
type is semitransparent, then a portion of the scene can corre-
spond to cloud type 1 overlaying the surface, cloud type 1 over-
laying cloud type 2, cloud type 2, and the surface. In such a case,
three cloud formations will exist in general even if the relative
amounts of each cloud type are as initially stated above.

The methodology we use to determine is general for
handling up to cloud formations. The simulations done
by the AIRS Science Team, and shown in this paper, used
essentially two cloud formations of gray clouds with differing
amounts of clouds at two discrete levels in each of the nine
AIRS footprints within an AMSU-A footprint. The cloud spec-
tral emissivities and cloud top pressures were allowed to vary
slightly between FOVs, however. Surface skin properties also
had some variability between FOVs. This allows for multiple
degrees of freedom within the 3 3 array of AIRS spots in a
single AMSU-A footprint.

Susskindet al. [23] used the nine AIRS spots within an
AMSU-A footprint to construct three FOVs used to determine
two values of to be used in (1). Field of view 1 was comprised
of the average of the observations in the three warmest spots
in an 8- m window channel, and FOV 3 was the average
of three coldest spots. We now use all radiances in all spots
separately and determine nine values of. Given , clear
column radiances for all channels can be obtained from (2).
As in [23], we determine the valuesand from observations
in a selected set of cloud-filtering channels that are
primarily in between lines in the 15-m CO band and in the
4.2- m CO bandhead region, with some additional channels
in the window regions. If, for each channel, one substitutes an
estimate of for in (2), this gives equations for
unknowns. The unconstrained weighted least square solution
to this multilinear problem is given by

(3)

where is a matrix with ;
is an matrix given by

; and is an channel noise covariance matrix.
The nine radiances are observed at three different zenith

angles. Having observations at different zenith angles will cause
additional contributions to that are not due to differences in
cloud cover. To remove these, we adjust all observed channel
radiances to what they would have been if taken at the central
zenith angle of the 3 3 array of AIRS spots according to Gold-
berget al. [11]. From now on, refers to adjusted observed
radiances.

The key to the accurate determination ofis obtaining the
best estimates of , along with an accurate treatment
of the noise covariance matrix . As in [23], we assume the
noise in channel used to determine is dominated by errors
in . The values of that we use to determine

(and ) are iterative and are computed based on the current
best estimate of all relevant surface and atmospheric properties.
For optimal results, it is important for the estimated geophys-
ical parameters to be unbiased over large regions of the atmos-
phere. For example, if the estimated temperature profile were
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uniformly too warm, values of would all be too high
and incorrect values of would be obtained which would re-
construct too high values of . To avoid this, we make sure that
the profile used to estimate is consistent with observa-
tions in all AMSU-A and HSB channels, thus insuring an unbi-
ased temperature and moisture profile over coarse layers in the
atmosphere. It would be a mistake to use an analysis or a fore-
cast field directly to compute because this field, while
potentially accurate, could be biased in the vertical.

The iterative methodology to determine clear column radi-
ances consists of four passes to determine( ),
using four sets of conditions, described later, to estimate

, in which and hence , become increasingly
more accurate for each iteration. Each set of conditions has
its own , reflecting expected errors in .
The diagonal term of the noise covariance matrix is modeled
according to

(4a)

and the off-diagonal term is given by

(4b)

where is the channel instrumental noise and the re-
maining terms are contributions to errors in the computed value

resulting from errors in estimated surface skin temper-
ature, surface spectral emissivity, surface spectral bidirectional
reflectance of solar radiation, and temperature and moisture pro-
file, respectively. The partial derivatives are determined empir-
ically by computing the radiance using the current estimate of
each parameter and recomputing it after a small change in that
parameter. In [23], the uncertainties, such as , are specified
so as to be indicative of the expected errors for that parameter
in pass . We now predict these errors on a profile by profile
basis for each pass by propagation of expected sources of error
through the retrieval process in a manner to be described later.
A principal source of retrieval error arises from errors in the re-
constructed clear column radiances. These errors propagate into
degraded estimates of all the variables shown in (4).

Selection of Optimal Fields of View

The effects of instrumental noise on the clear column radi-
ances will in general be amplified from single spot noise values
because the clear column radiances are expressed as a linear
combination of the observations in different FOVs. If there were
no other sources of error, the diagonal term of the clear column
radiance noise covariance matrix in a given pass in (2) would be

(5)

where is the noise amplification factor, given by

(6)

is approximately equal to because the first
term, containing the factor 1/9, is small. It is desirable to find an
accurate expression for clear column radiance that minimizes

. We can minimize by expressing (2) in terms of
radiances in an optimal set of FOVs, given by linear combina-
tions of the original set. The optimal can be found by
transforming the original contrast fields, to a new set ac-
cording to

(7)

where is the unitary transformation that diagonalizes

(8)

This is equivalent to having selected

(9)

One eigenvalue is always zero because only eight linearly
independent values of exist. In transformed space

(10)

and the solution for is given by

(11)

where is the transpose of .
It is apparent that large eigenvaluesimply low values of

while small eigenvalues imply large (and undesirable) values of
. The eigenvalues themselves indicate the degrees of freedom

in the radiances in the different FOVs corresponding to the
different number of cloud formations. Typical cloud formation
eigenvalues are the order of 1000. We discard all eigenvalues
less than 25 and set accordingly, with the constraint that

is never greater than four. We also do not include any
eigenfunction whose eigenvalue is less than the uncertainty in

, given later in (13). Discarding low eigenvalues reduces the
noise amplification factor by suppressing noise in the solution
of , resulting in lower values of.

Under certain pathological conditions, one or more cloud
formations may not result in significant eigenvalues of

and cannot be solved for, resulting in a poor
solution. The most obvious example of this is a single cloud
formation with a constant cloud fraction in each FOV. Here,

is comprised of noise only. The most common examples
of this are all FOVs are clear, which is a benign case, or all
FOVs are overcast, which is a case which must be otherwise
identified and rejected. Likewise, with two cloud formations,
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if the lower cloud deck is overcast, a proper reconstruction of
the clear column radiances cannot be obtained. In this case, if
the cloud fraction of the upper cloud in FOV k is , then the
lower cloud fraction as seen from above, , is . In
general, if for all , then cloud formation 2
will have a zero eigenvalue of up to noise effects.
The benign case occurs when , corresponding to a truly
single cloud formation.

Contribution of Clouds to the Retrieval Channel Noise
Covariance Matrix

The basic retrieval methodology described in the next sec-
tion requires a channel noise covariance matrixrepresenting
channel correlated errors in the terms and
where is the radiance computed for channelbased on the

th iterative solution. The channel noise covariance matrix is
the sum of two parts, resulting from noise in the reconstructed
clear column radiances with noise covariance , and noise
in the computed radiances due to uncertainty in the param-
eters assumed known, with noise covariance.

is the expected noise covariance matrix
for the channel clear column radiances. The noise inob-
tained from (2) has two parts, arising from instrumental noise

, and from cloud-clearing errors coming from errors in
. Errors in will cause channel correlated clear column radi-

ance errors. Clear column radiances for those channels affected
by clouds will have this additional error due to errors in. For
the AIRS instrument, the channel noise is spectrally uncorre-
lated, giving the final result

(12a)

and

(12b)

where is the error covariance of. If , as defined in (4),
is indeed representative of the noise in the determination of,
then it can be shown [see (38)] that

(13)

In the special case for which we determine that channeldoes
not “see” the clouds (i.e., stratospheric sounding channels or
tropospheric sounding channels peaking significantly above the
highest cloud top), the clear column radiance is best described as
the average radiance in all FOVs. For these channels, the scene
appears to be clear and we can define effective values of
for “clear” channels as for all . For these channels
[see (6)]

(14)

which is a noise reducer. For “clear” channel, one can write

(15)

where is any other channel and is the Kronecker delta func-
tion.

For a channel to be determined not to see clouds, it must be
included in a list showing a 95% probability of not seeing a
cloud, which is precomputed as a function of cloud top pres-
sure and zenith angle. In addition, the standard deviation of the
radiances in the 3 3 array of AIRS spots must be less than
twice the channel noise.

For channels which see clouds, the clear column noise covari-
ance can now be expressed as

(16)
Errors in clear column radiances can be larger than predicted by
(16), however, because is just an estimate of .
Moreover, (16) does not take into account contributions to the
noise covariance matrix arising from higher components of
not solved for ( ) as well as fitting errors due to a poor
first guess. Another estimate of the error in theparameters can
be computed using weighted radiance residuals in the channels
used in the cloud-clearing retrieval . If we take

as the uncertainty of , then using (11),
we estimate the uncertainty in according to

(17)
which we evaluate for all significant functions with

. This includes eigenfunctions with and therefore
not included in the solution for . For values of , we
take

(18)

and for values of between and (significant eigen-
values ) we set

(19)

and write

(20)

One can think of (20) in terms of a different effective noise am-
plification factor for each channel

(21)

where

(22)

The channel effective noise amplification factor is largest for
channels which see the surface and have potentially large
values of the scene contrast . We find it convenient to
define an effective noise amplification factor relevant to the
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surface channel retrieval step as the RMS value of over
all NSURF IR channels used in the surface retrieval step

(23)

Very large values of can arise when is large (
is sometimes 100 or more) and indicate a large uncertainty in
the determination of the clear column radiances. These large
uncertainties are sometimes caused by hidden, or nearly hidden
cloud formations, and often correlate with poor solutions.

III. B ASIC RETRIEVAL METHODOLOGY

The basic retrieval methodology is the same as that of [23]
and is reviewed below. After a startup procedure to determine
the clear column radiances, we use AIRS/AMSU/HSB data to
retrieve the following:

a) surface skin temperature, surface spectral emissivity, and
surface bidirectional reflectance of solar radiation;

b) atmospheric temperature profile;
c) atmospheric moisture profile;
d) atmospheric ozone profile;
e) cloud properties.

These steps are done sequentially, solving only for the variables
to be determined in each step and using previously determined
variables as fixed but with an appropriate uncertainty attached
to them which is accounted for in the channel noise covariance
matrix . The objective in each step is to find solutions which
best match the observations for a select set of channels, bearing
in mind the channel noise estimates. The “observations” in
Steps a)–d) are the clear column radiances as determined
from (10) and (11), with values of used for appropriate
channels. The cloud parameters determined from Step e) are
found so as to be most consistent with the actual observed
radiances and the clear-sky geophysical parameters determined
from Steps a)–d). Steps a)–d) are ordered so as to allow for
selection of channels in each step which are primarily sensitive
to variables to be determined in that step or determined in a
previous step, and relatively insensitive to other parameters.
Separation of the problem in this manner also allows for the
problem in each step to be made as linear as possible. Steps
a)–e) are all solved for in a completely analogous manner,
linearizing the problem about initial guess parameters and
iterating the solution until convergence is reached. In general,
these linear equations are ill conditioned and require some
form of stabilization, which is commonly based on an estimate
of the accuracy of thea priori information obtained in the first
guess or background field [19], [12]. The methodology we
have developed, described in the next section, relies exclusively
on the signal to noise of the observations to indicate the
degree to which the information contained in the radiances
should be believed, and does not involve use of an estimate
of the accuracy of the background field.

Iterative Least Squares Solution to the Nonlinear Problem

The solution to each of the five steps described above is done
in the form

(24)

where is the th iterative state, is a set of functions,
and

(25)

is determined each iteration so as to minimize the resid-
uals , weighted inversely with respect to expected noise
levels, for the channels used to determine. The residual for
channel is defined as

(26)

where is the reconstructed clear column radiance, is the
radiance computed from theth iterative parameters, and
is the brightness temperature corresponding to. The th
iterative residual for channelis attributed to errors in the coef-
ficients and to the noise effects

(27)

where is an element of the sensitivity matrix, or Jacobian,
given by

(28)

and the noise factor for a given case has two parts: errors
in observed clear column radiance that are affected by in-
strumental noise and cloud-clearing errors, and computational
noise .

In the simulations done thus far, we have assumed perfect
knowledge of physics, i.e., if we know all of the variables ex-
actly, we can compute exact noise-free radiances. Nevertheless,
the transmittances depend on the variables to be solved for.
Therefore, computational noise exists. Computational noise,
arising from errors such as a low (high) estimate of atmospheric
water vapor, will produce noise that is spectrally correlated.
Instrumental noise is spectrally uncorrelated but cloud-cleared
radiance errors are correlated. Each retrieval step in passuses
an appropriate noise covariance matrix

(29)

where was defined in (20).
The matrix in (29) represents channel correlated uncer-

tainties in the computed radiances and based primarily
on uncertainties in the parameters being held fixed in a given re-
trieval step. For example, when we are solving for temperature
profile, we are holding fixed surface parameters, moisture
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profile, and ozone profile. We currently write

(30a)

and

(30b)

The terms in (30a) and (30b) do not depend to first order on
the variables being solved for or the iterative state. The term
0.1 included in (30a) is taken to represent additional uncertain-
ties in computed brightness temperatures based on the imperfect
knowledge of the variables being solved for, as well as poten-
tial spectroscopic errors. The methodology used to predict and
propagate errors such as for use in the computation of
will be discussed later. These terms are analogous to the terms
in (4), but uncertainty in profile was not included in (4) as
it did not prove to have a significant effect on the solution and
the calculation is computationally expensive. In analyzing real
data, we modify computed radiances to account for errors in the
physics in a manner to be described elsewhere. Additional terms
in the channel noise covariance matrix can account for residual
uncertainties in the computed radiances.

Application of a Constraint

The standard constrained solution [12] to this problem is
given by

(31)

where is a stabilization matrix. Without stabilization,
would minimize the weighted residuals , but the
matrix elements of might be large. This is undesirable as it
amplifies errors in in determining . The key to op-
timization of the solution lies in accurate treatment of the terms

, and ; a judicious choice of the functions and chan-
nels ; and optimal treatment of the constraint matrix. Hanel
et al. [12] and Rodgers [19] have reviewed several methods of
constraining the ill-conditioned inverse problem. In the min-
imum variance approach [19], is taken to be the inverse of the
a priori error covariance. If the statistics of both the measure-
ment anda priori are Gaussian, the maximum likelihood solu-
tion is obtained. If thea priori covariance is taken to be ,
the maximum entropy solution is obtained. Other forms ofin-
clude the first or second derivative formulations [25] that force
a smoothness constraint on the solution. The solution can also
be constrained by the relaxation method [5] and by the Backus
and Gilbert [1] method.

The minimum variance and maximum likelihood solutions
are often considered to be “optimal.” However, if thea priori

error covariance is not known or estimated incorrectly, the so-
lution will be suboptimal. If thea priori errors are underesti-
mated, the solution could be overconstrained. This could poten-
tially create biases in the retrievals. The biases may mask small
trends in the retrieved data that one may be trying to extract. The
approach described here attempts to keep the effects of instru-
ment noise at a tolerable level without assumptions regarding
thea priori data error covariance.

Our objective is to determine a constraint matrix that affects
only the pieces of information not well determined by the radi-
ances. This involves use of an optimal set of functions, related
to by a unitary transformation

(32)

in terms of which we could write

(33)

In terms of the functions , (31) becomes

(34)

A new term has been included in (34) which is a back-
ground correction term that is zero in the first iteration and will
be discussed in detail later. The optimal transformation matrix

is chosen so that is diagonal with
eigenvalues . The inverse of each eigenvalue is the variance of
eigenmode . The unconstrained solution, with both
and with no background correction , is given by

(35)

where is the th row of . Low values of ,
indicating ill-conditioned variables , would lead to large co-
efficients of in the determination of if the solution
for the coefficients of these functions were unconstrained. We
therefore only constrain the solution of those functionswith
low eigenvalues and set . The constrained so-
lution is now given by

(36)

where is a damping factor equal to unity if no constraint is
applied and zero if is infinite. If , all the information
about obtained from the radiances is believed. Otherwise
only of the information in the radiances is believed, and

of thea priori information is believed.
The objective of damping a mode is to reduce propagation of

noise , which is given by

(37)
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where is the noise in . A statistical estimate of
over an ensemble of profiles is given by

(38)

to the extent that accurately represents , the noise
covariance of . We assign a noise propagation threshold

for each type of retrieval (surface properties, temper-
ature profile, etc.) and set if . Oth-
erwise, we obtain such that .

Formulation of the Background Term

The need for an iterative process arises because the radiative
transfer equation is not linear. In every iteration, we recompute

, as well as and . If the solutions were com-
pletely linear, and we applied no damping, then

(39)

and would be determined to be zero because
would have already minimized the residuals .

The residual is not zero however, both because
is not given exactly by as a

result of nonlinearity, and because . As a
result of applying rather than , we obtain

(40)

In (40), represents the portion of that is due
to effects of nonlinearity on the solution, while represents
the residual portion of due to the effects of damping
in iteration . The second term is zero for undamped modes
and increases in significance with increased damping. This term
is also zero for all modes in the first iteration. We only want
to include the effects of nonlinearity on in the iterative
procedure used in the determination of . Therefore, the
background term to be used in (34) is given by

(41)

and we solve for according to

(42)

where is the value of which was applied in iter-
ation . Inclusion of the background term in (42) insures

second order convergence along the lines discussed in [19] with
regard to treatment of thea priori term.

Convergence Criteria

In solving (42), we are attempting to find solutions to the
radiative transfer equations that minimize weighted residuals of
observed and computed brightness temperatures, corrected for
the background term. To test convergence of the solution, one
should monitor the weighted residual

(43)

where the weight matrix accounts for noise effects on the
channel residuals, as well as the relative information content
of the channels with regard to the variables being solved for.
For example, if a channel (or linear combination of channels)
carries little information content in terms of signal to noise, it
should be given little weight in the estimation of the residual
in (43). An appropriate choice of , expressing the information
content of the channels, would therefore be

, in which case we obtain

(44)

As shown in (44), a reasonable way to determine if the solution
has converged, in terms of weighted residuals of observed minus
computed brightness temperatures, is to see if the solution has
converged in terms of the iterative changes in the solution itself.
Initially, we set if , that is, coefficients of
very heavily damped components with little information content
are not believed at all in any iteration. The solution is said to
have converged when the root sum square (RSS) value of
is less than 10% of the RSS value of for all components
not set equal to zero. The iterative procedure is also terminated
if the RSS value of is not less than 75% of that of
for the nonzero components. This indicates the solution is not
converging rapidly enough and may be responding primarily
to unmodeled noise. The iterative procedure, which typically
converges by three iterations, is carried out analogously for all
retrieval steps.

Variables and Functions for Retrieval Steps

As shown in (24), all steps involve expression of the basic
variables in terms of a set of functions . In the tempera-
ture profile retrieval step, the temperature perturbation functions

are 24 trapezoids piecewise linear in log of pressure, span-
ning the pressure range 0.016 mb to the surface, with a perturba-
tion of 0.5 K between pressures and , and 0 at and

. In the top and bottom functions, the top or bottom portion
of the trapezoid is missing. The Jacobian is obtained numer-
ically by computing the channel brightness temperature for
the th iterative temperature profile and subtracting it
from the brightness temperature computed with everything else
fixed but perturbing by one unit of . With regard
to water vapor and ozone profiles, we express solutions in the
form

(45)
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with the functions ( for water vapor and for
ozone) and methodology for computation of the Jacobian being
completely analogous to those for temperature profile. In the
case of surface variables, the functions are a discrete value of
surface skin temperature, as well as nine triangle functions in
the frequency domain dealing with perturbations of surface
emissivity and three with surface bidirectional reflectance of
solar radiation. The total precipitable water also can be adjusted
byusing(45)withasingle functionwhich isconstantasafunction
of height. The window channels are sensitive to boundary layer
water vapor but not higher level water vapor. Adjustment of
total precipitable water is used in an intermediate retrieval step,
done before the water vapor retrieval step using AIRS channels,
and improves total low-level water vapor at the expense of
upper level water vapor. Table I shows the pressure levels used
in the temperature profile, moisture profile, and ozone profile
retrieval steps. These pressure levels are a subset of the 100
levels used by Strowet al. [22] in the AIRS radiative transfer
calculation.

Selection of Channels

While AIRS has 2378 channels, it is neither necessary nor
optimal to use all the channels in the retrieval process as
the information content of these channels is highly redundant.
Therefore, computational time can be lowered by limiting the
number of channels used without an appreciable effect on the
results. In a given step, it is preferable to use channels which
are primarily sensitive to the variables being solved for, while
relatively insensitive to variables not yet solved for. We also
find it desirable to use channels with sharp localized weighting
functions. The channels selected are optimized to be applicable
for all conditions. Kaplanet al. [14] show that channels with
sharpest weighting functions lie either in between absorption
lines or on the band head of the 4.3-m CO band between
2378 cm and 2390 cm . The first set of channels have sharp
weighting functions because of a rapid increase of absorption
coefficient with increasing pressure, while the second benefit
from a rapid increase of absorption coefficient with increasing
temperature in the troposphere. Such channels form the basic set
used for temperature sounding. Channels in between water vapor
absorption lines also produce very sharp weighting functions
which are preferable for water vapor sounding and also useful
for temperature sounding if the water vapor distribution is
known accurately. Channels between absorption features are
by definition less opaque than nearby channels situated on
absorption features, and may not have sufficient opacity to be
sensitive to either temperature or constituents at high enough
levels in the atmosphere. For temperature profile, we select
channels in the COQ branch at 667 cm , which do not
have sharp weighting functions but are sensitive to temperature
variations up to 1 mb. We do not select channels in the most
opaque portion of the 4.3-m CO band because these channels
are sensitive to effects of nonlocal thermodynamic equilibrium.
For water vapor, we selected a few channels on the peaks
of some of the strongest absorption features in the 6.7-m
water vapor band to increase the sensitivity to stratospheric
and upper tropospheric water vapor.

TABLE I
TRAPEZOID FUNCTION ENDPOINTS(mb)

Window channels are highly redundant with each other and
have been selected generally on and off closely lying weak
absorption features in the spectral regions from 755 cm–980
cm , 1070 cm –1240 cm , 2180 cm –2192 cm ,
and 2390 cm to 2665 cm . Cloud-filtering channels are
generally a subset of the temperature sounding channels which
are sensitive to the troposphere. Our sounding methodology
involves two temperature profile retrieval steps, one (temp 1)
before the water vapor retrieval step, and the other (temp 2)
subsequent to it. In temp 2, we include a number of channels in
the water vapor absorption band which produce sharp tempera-
ture weighting functions. These channels are treated as “noisy”
in the channel noise covariance matrix to the extent that the
predicted uncertainty in water vapor distribution produces an
appropriate uncertainty in their computed brightness temper-
atures. The location of all channels used are shown in Fig. 1.
We use 53 channels in the surface temperature retrieval, 147
channels in the first temperature profile retrieval, an additional
seven channels in the second temperature profile retrieval, 66
channels in the water vapor profile retrieval, and 23 channels
in the ozone profile retrieval. Some channels are used for more
than one purpose. Channels also exist which can be used for
retrievals of profiles of CH, CO, and CO. These will be
described in a future publication.

Table II shows the eigenvalues and damping factors for the
second pass temperature profile retrieval, the water vapor re-
trieval, and the ozone profile retrieval for a typical case. Coeffi-
cients of eight temperature profile functions are undamped, and
those of two more functions are only slightly damped, giving
about nine pieces of information about the temperature pro-
file being contained in the radiances. Roughly 4 1/2 pieces of
information about water vapor are contained in the radiances,
and roughly 1 1/2 pieces of information are contained about the
ozone profile in this case.
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Fig. 1. AIRS spectrum showing channels used in different retrieval steps. Temperature sounding channels are red, ozone are green, water vapor are blue, and
surface channels are orange.

TABLE II
SAMPLE EIGENVALUES AND DAMPING FACTORS(� > 0:05)

Cloud Parameter Retrievals

In performing cloud parameter retrievals, all other variables
are assumed known within their estimated errors, allowing us to

compute . The channels used are the subset of cloud-
clearing channels that are not sensitive to solar radiation re-
flected off the clouds. The cloud parameter retrieval algorithm
is analogous to that of the other steps but slightly different. At
this time, the cloud retrieval algorithm has been tested only for
the case of assumed cloud spectral properties in order to deter-
mine cloud fractions and cloud top pressures for up to two layers
of clouds. The method is easily generalizable to include cloud
spectral emissivity by inclusion of an appropriate set of spectral
emissivity functions as done in the surface parameter retrievals.
With known spectral properties, cloud radiances can
be calculated based on the surface skin temperature and atmo-
spheric temperature–moisture–ozone profile, which have been
retrieved from the clear column radiances and are “known,” as
a function of unknown cloud top pressure. For two cloud
layers (the method works for any number of cloud layers) we
can write

(46)

where is the radiance computed for channelin FOV cov-
ered by (as seen from above) fractional coverage of a cloud
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at and of a cloud at . In the above equation, we have
assumed two types of clouds in each of the FOVs , with
different cloud fractions in each FOV. All clouds were assumed
to have a constant spectral emissivity of 0.9. In order to deter-
mine the variables , we use observations
in the nine FOVs for the subset of channels used to determine

which are unaffected by solar radiation. The noise covariance
matrix used to retrieve cloud parameters is identical to that
used in (4) to determine, but for the appropriate subset of chan-
nels.

Given the th guess cloud parameters , and
, we define

(47)

and obtain the iterative equation

(48)

where the terms in the square brackets are the appropriate Ja-
cobians, which are computed empirically as are all other Jaco-
bians. It should be noted that if (for all ) and/or
(for all ) are small for a given , that cloud top pressure will
be contained primarily in a heavily damped mode and not be
changed significantly from the initial guess.

Error Propagation and Channel Noise Covariance Matrix

Equations (4) and (30) contain terms such as , indica-
tive of expected errors in state parameters used in a given pass
and step. These errors are case dependent and can be estimated
by propagating expected errors through the retrieval system. In
any iteration, the estimate of a parameter, such as , is
given by

(49)
where is a discrete pressure level. There are three contributions
to the expected error . The first contribution comes
from the null space error, arising from the error of the first guess
in the space outside that of thefunctions used to expand the
solution. The second component arises from errors in the coef-
ficients . The last contribution arises from the damping of
the solution in which ( of the first guess (or previous it-
eration) is believed for each eigenfunction

Equations (4) and (30) contain the square of the expected error
in state parameter , , which can be expressed in terms
of errors in the expansion coefficientsaccording to

(50)

where is the null space error and is the error in the
coefficients used to represent . Errors in arise both
from errors in the coefficients and errors in the damped por-
tion of the iterative guess. In every step in the retrieval
process, we begin with parameters having an uncertainty

. The uncertainty of the microwave product first guess is
specified based on expected errors, as is the null space error.
Given , can be solved for according to

(51)

In a given iteration, we can express according to

(52)

where represents the predicted error in due to
noise propagation, and the second term represents the portions
of the errors of the previous iterative profile which are
believed in the current iteration. Given from (52) for the
final iterative step, we compute the square of the corresponding
profile error to be used in (4) and (30) according to (50). This
term is carried to the next retrieval step and used in (51) to give

which is in turn used in (52) to generate the uncertainty in
parameter for use in subsequent steps.

For moisture and ozone profile, the form of the expansion is
slightly different [see (45)] and we write

(53)

Surface spectral emissivity and bidirectional reflectance are
analogous to temperature profile, as is skin temperature, in
which case is a number. The liquid water profile comes
from the microwave product and is not iterated. We assume an
error estimate of 20% of the liquid water profile. In addition,
if the total liquid water is less than 0.01 g/cm, we consider
the possibility that liquid water may have been missed due
to an error in the water vapor microwave solution. For these
low liquid water solutions, an alternative error estimate of

RH , where RH is the relative humidity and
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is the layer water vapor in milligrams per cubic centimeter, is
considered and used if it is larger than 20% of the liquid water.
The null space temperature error is taken as 0.1 K in the lower
and upper atmosphere, increasing to 0.2 K near the tropopause.
The null space error in percent is taken as 5% for water vapor
and 10% for ozone respectively.

Equation (52) is case dependent through the parameters
and , which depend both on the matrix and more signifi-
cantly on the matrix. contains contributions from clouds,

, and parameter uncertainty. The uncertainties determined
from (50), (52), and (53) in turn are used in the computation of

[(30)] and [(4)].
Equations (50) and (53) give the magnitude of the estimated

error in each parameter but contain no information about sign.
If we assume all are of the same sign, we would over-
estimate the effect of the uncertainty of that parameter on the
computed radiances. Bearing this in mind, when the derivatives
in (4) and (30) are computed numerically, we write

(54)

where is constructed by multiplying by a sine
wave with a full period of six temperature profile functions in
the case of uncertainty of temperature profile to be used in the
humidity and ozone profile retrievals, and six humidity pro-
file functions in the case of water vapor uncertainty to be used
in the temperature and ozone profile retrievals. In the case of
ozone profile, with only seven functions, we simply multiply
the predicted uncertainty by 0.5. We have also found that in con-
structing the noise covariance terms in (4), it is advantageous to
set for all profile terms. For surface parame-
ters we take , as for the liquid water profile.

Steps in the Processing System

The processing system used in this paper is comprised of a
number of sequential steps listed below. All steps start from the
conditions found in the previous step, with appropriate com-
puted uncertainty estimates unless otherwise noted.

Step 1) Use as a starting point the microwave product which
agrees with the AMSU-A, HSB radiances [20]. We
follow this by a temperature profile retrieval using
AMSU-A radiances as well as AIRS radiances
for channels that never see clouds, followed by a
water vapor retrieval using HSB channels and some
AMSU-A window channels. As part of the tempera-
ture profile retrieval, we also update the surface skin
temperature and microwave spectral emissivity.

Step 2) Determine an initial from (11) using the atmo-
spheric and surface parameters obtained in Step 1).
We also perform a cloud parameter retrieval to help
determine which IR channels are not affected by
clouds. is obtained using in (10).

Step 3) Determine the first guess IR surface parameters
and temperature–moisture–ozone profile using
basedonaregressionstepusingmostAIRSchannels
[11]. Under some difficult cloud conditions, this
first guess is modified in a manner described later.

Step 4) Produce an improved temperature profile and
microwave spectral emissivity starting from the
surface and atmospheric parameters determined in
step 3) using the AMSU-A channel radiances and
AIRS channel radiances which do not see clouds.
The surface skin temperature is not updated as
it is estimated better from AIRS radiances than
can be determined from AMSU radiances. This is
followed by an improved water vapor profile using
HSB radiances.

Step 5) Determine taking advantage of the refined pa-
rameters. Also determine cloud parameters to de-
cide which channels do not see clouds so as to av-
erage radiances in these channels when producing

. is considerably more accurate than be-
cause the surface and atmospheric parameters ob-
tained from the AIRS regression step are more ac-
curate than those from the microwave first product,
especially the infra-red surface spectral properties
which are not determined from the microwave re-
trieval.

Step 6) Perform a surface parameter retrieval using AIRS
surface sounding channels shown in Fig. 1, and
AMSU-A and HSB window channels. This pro-
duces a new skin temperature, IR and microwave
spectral emissivity, and IR spectral bidirectional in-
flectance. It also includes adjustment of the entire
water vapor profile by a single trapezoidal func-
tion which is constant in the troposphere and lower
stratosphere.

Step 7) Determine taking advantages of the refined sur-
face parameters, and produceand new estimates
of cloud parameters.

Step 8) Use to sequentially determine surface pa-
rameters, temperature profile, humidity profile,
and ozone profile. These are called the first pass
retrieved products.

Step 9) Update temperature profile. See Step 8).
Step 10) Update humidity profile. See Step 8).
Step 11) Update ozone profile. See Step 8).
Step 12) Update the temperature profile, using only

AMSU-A radiances and AIRS channel radi-
ances insensitive to clouds. This profile is also
used in the rejection criteria and is referred to as
the test microwave only retrieval.

Step 13) Using the first pass retrieved products and updated
temperature profile, determine , final cloud pa-
rameters, and the final clear column radiances,
which is a product of the system.

Step 14) Repeat Steps 8) and 9) usingto obtain the final
product surface parameters and temperature pro-
file. The initial guess used in the second pass sur-
face parameter and temperature profile retrievals is
identical to that of the first pass but all other pa-
rameters are updated, such as the clear column ra-
diances, moisture profile, etc. The noise covariance
matrix is also updated to account for better esti-
mates of the other parameters. In addition, chan-
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nels in the water vapor band which are highly sensi-
tive to lower tropospheric water vapor are included
in the final temperature profile step (but not the
first pass) because an accurate moisture profile has
now been retrieved. The moisture profile and ozone
profile retrieval steps are not repeated, as no ap-
preciable improvement in parameters resulted from
further retrieval steps.

Step 15) Test solution for acceptance. If rejected, return to
the AMSU/HSB retrieval starting from the initial
guess, including AIRS channels insensitive to
clouds, as the “final microwave only” product.
Cloud parameters for rejected cases are based on
this solution and were determined in Step 2).

Step 16) Determine (outgoing longwave radiation) OLR and
clear-sky OLR using the appropriate solution for
either accepted or rejected cases.

Adjustment of the First Guess

The first guess temperature profile used in Step 4)
is usually the result of the AIRS regression done in Step 3),

. Under most conditions, this is considerably more ac-
curate than the microwave product used in Step 1).
However, under some difficult cloud conditions, a very poor
regression can be obtained. In general, the regression temper-
ature profile will degrade below 300 mb with increasing values
of the effective noise amplification factor, and can be consid-
erably poorer than the microwave retrieval, especially near the
surface. The problem is compounded, in cases of large effec-
tive noise amplification factor, because temperature sounding
channels sensing the lower troposphere will be treated as noisy
due to a large contribution of the second term in the noise co-
variance matrix [see (20)]. Consequently, eigenfunctions having
high vertical resolution in the lower troposphere will be heavily
damped and the poor vertical structure in the lower troposphere
of the regression guess will be heavily believed. To help alle-
viate this problem, we construct a first guess temperature pro-
file which is a linear combination of the and
below 300 mb

(55)

where if and if ,
with values of linearly interpolated between zero and
one for intermediate values of . In addition, for

mb, and is linearly interpolated in for
intermediate pressure values between 300 mb and the surface
pressure .

Computation of OLR

OLR is computed from the AIRS products in a manner anal-
ogous to that used to compute OLR from TOVS [15], [16]

(56)

where , the clear-sky OLR, is the sum of contributions
from 14 spectral bands each with effective surface emissivity

(57)

and the band transmittances are computed at effective
zenith angles . The small term related to downwelling thermal
radiation reflected off the surface and transmitted to space is ne-
glected. is computed in an analogous way, in terms
of the cloud spectral emissivity , and assuming a cloud
transmissivity of

(58)

The band transmittances are parameterized as a function
of temperature, moisture, and ozone profile [16]. The spectral
cloud emissivity was assumed to have a constant value of 0.9,
to be consistent with what was done in the cloud parameter re-
trieval.

Rejection Criteria

A number of tests are done to assess the quality of the re-
trieval. If any of the tests fail, the full IR-microwave retrieval is
rejected. In such a case, the retrieval based on use of microwave
and stratospheric AIRS channels Step 1) is reported, and appro-
priately flagged as such. Results shown later in the paper do not
include these rejected retrievals. The major cause of rejection is
difficulty in dealing with the effects of clouds on the AIRS ra-
diances. The tests are described below.

1) Assessment of Cloud Clearing Fit:Equations (11) and
(10) give the solution for the vector and the resultant clear
column radiances . If a successful solution is produced, the
ensemble for the cloud-clearing channelsshould match
the incoming estimates of clear column radiances to a
reasonable degree. A poor match is indicative of either a par-
ticularly poor first guess or problems in handling the effects
of clouds on the radiances. We compute the weighted residual
of the clear column radiances used in the computation ofin
brightness temperature units

(59)

and reject the solution if computed when generating
is greater than 1.75 K. Equation (59) is equivalent to taking
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Fig. 2. Number of cases as a function of cloud fraction (black), percentage of successful cases (mauve), and percentage of cases called essentially clear (blue).

TABLE III
NUMBER OF CASES AS AFUNCTION OF LATITUDE

the residual of clear column brightness temperatures weighted
by the channel noise covariance in brightness temperature
units.

2) Difficult Cloud Cases:Cases with extensive cloud cover
and low contrast are particularly difficult. The solution is re-
jected if the sum of the final retrieved cloud fractions for all
cloud layers is greater than 80% or the total cloud fraction is
greater than 50%, and the total cloud below 500 mb is greater
than 10% and the noise amplification factor is greater than two,
or the noise amplification factor is greater than three, or the ef-
fective noise amplification factor is greater than eight. We also
reject cases if the total cloud liquid water determined by the mi-
crowave product is greater than 0.03 gm/cm.

3) Large Residuals in Second Pass Retrievals:The general
iterative solution is terminated when either the residual
[(44)] is less than 10% of the RSS of the predicted noise for
each mode , [(38)] or is more than 75% of .
Slow convergence may indicate a poor solution. We reject the
solution if the converged value of is greater than the RSS of

in either the surface parameter retrieval or the temperature
profile retrieval in the second pass. Poor convergence generally
indicates problems with the clear column radiances.

4) Inconsistency of Test “Microwave Only” and Combined
IR/Microwave Retrievals:Under some conditions, the clear
column radiances can be poor but all convergence tests are
passed. Nevertheless, the test microwave only retrieval will
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Fig. 3. (Top) Mean value of cloud correction needed, cloud correction made, and errors of cloud-cleared brightness temperature for essentially clear cases.
(Bottom) RMS values of cloud correction needed, cloud correction made, and cloud-cleared brightness temperature errors for essentially clear sport. Single spot
noise is also shown.

produce low-level temperatures which differ significantly from
those of the second pass retrieval. This generally indicates poor
clear column radiances. The solution is rejected if the RMS

differences between the temperature in the lowest 3 km of the
test microwave only retrieval differs from that of the second
pass retrieval by more than 1.25 K.
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Fig. 4. (Top) Mean values of cloud correction needed, cloud correction made, and errors of cloud-cleared brightness temperatures for all accepted cases. (Bottom)
RMS values of cloud correction needed, cloud correction made, and cloud-cleared brightness temperature errors for all cases. Single spot noise is also shown.

IV. SIMULATION STUDY

The simulation study is based on radiances computed from con-
ditions derived from a global simulation using a version of

the operational general circulation model (GCM) from NOAA
NCEP for December 15, 2000 [13]. Details of the methodology
to simulate the surface and atmospheric conditions for each
AIRS footprint are given in [10].
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The test set is the first scan line of every granule (6-min pe-
riod) for December 15, 2000. The dependent dataset, on which
the regression coefficients are based, is taken as cloud-free radi-
ances computed from the whole day December 10, 2000. A first
guess of all the geophysical parameters (including surface pres-
sure) taken from an 18-hour GCM forecast is available for use
in the retrieval. We used only the forecast surface pressure as it
is felt that use of a model forecast first guess temperature–mois-
ture profile is unnecessary to analyze AIRS/AMSU data because
of the high information content of the radiances.

The AIRS orbital dataset has the following salient features
within a given scene made up of nine FOVs:

• variable surface topography and surface pressure;
• daytime and nighttime conditions;
• temperature , moisture , ozone , and

other trace constituents from the surface to 0.005 mb;
• cloud liquid water profiles (only affects microwave);
• multiple-level cloud conditions within a FOV, with

spectrally varying cloud emissivity, , and reflec-
tivity, , consistent with atmospheric conditions.
The cloud top pressure, emissivity, and reflectivity are
spatially varying as well;

• variable surface skin temperature , spectral surface
emissivity , and spectral surface bidirectional re-
flectance ;

• variable land fraction, with coastlines, islands, lakes, etc.;
• orbital simulation with simulated scan lines with variable

viewing angle and solar zenith angle.

V. RESULTS

There were a total of 7200 cases in the simulation. In 74
cases, the microwave retrieval step failed, and no retrieval
was attempted. Of the remainder, 4604 cases were accepted.
Fig. 2 shows the number of cases, and percent accepted, as
a function of fractional cloud cover, in 0.5% bins. We also
show statistics for cases we classify as “essentially clear”
based on the observed radiances. This “essentially clear” flag
can be of use to the data assimilation community, in which
it is common to assimilate observed channel radiances under
clear conditions. The data assimilation community avoids cloud
contaminated radiances out of fear that noise due to handling
effects of clouds on the radiances may degrade the resultant
analyzed fields. Two potential problems with this approach
are that only a small number of cases are completely clear,
thus limiting the utility of the sounding data in improvement
of forecast skill, and scenes with small amounts of cloud
cover may be mistakenly classified as clear. Our “essentially
clear” flag is designed to include cases of very small amounts
of cloudiness to increase the yield of cases to be assimilated
as compared to only 100% clear situations.

A case is a candidate to be called essentially clear if the largest
eigenvalue of is less than 125 for ocean cases and
225 for land cases. This indicates a small amount of variability
in the radiances in the 3 3 array of AIRS spots. A larger value
of radiance variability is allowed for land cases to be called
clear because surface variability is larger over land than ocean.
We also define a cloud correction value as the average

Fig. 5. RMS temperature profile errors.

difference of the reconstructed clear column brightness tem-
perature and the nine spot average brightness temperature,

, for all channels in the window regions between 800 cm
and 900 cm . For the scene to be declared “essentially clear,”

must be less than or equal to 0.1 K. In addition, the re-
trieval must be accepted. 431 cases were called essentially clear.
Fig. 2 includes the number of cases called “essentially clear”
as a function of actual cloud cover. The average cloudiness of
all cases was 37.14%, the average cloudiness of all accepted
cases was 31.31%, and the average cloudiness of all cases called
essentially clear was 0.94%. The percentage of cases accepted
drops slowly with increasing cloud cover until about 50%, and
then drops off more rapidly after that. Roughly 40% of those
accepted cases with cloud cover less than 0.5% were identified
as “essentially clear.”

Table III gives the distribution of the 7200 cases as a func-
tion of latitude, with separate statistics for ocean and land. On
this particular day, most of the essentially clear cases occurred
in the tropics and southern (summer) hemisphere, with a sub-
stantial percentage (27.3%) occurring poleward of 70S. The
percentage of cases accepted over land (47.5%) is considerably
lower than that over ocean (72.3%). A high percentage of re-
trievals were rejected in large areas of very cold snow covered
land in Canada and Siberia.
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Fig. 6. (Top) Mean temperature errors as a function of cloud cover for accepted retrievals. (Bottom) RMS temperature errors as a function of cloud cover for
accepted retrievals.

Fig. 3 shows statistics for the clear column brightness temper-
atures for the 431 essentially clear cases, with biases shown in
the upper and RMS values shown in the lower part of the figure.
The toppanel shows thedifferencebetween thenoise-freebright-
ness temperatures computed from the truth for a given scene and
the average of the observed brightness temperatures in the 33
array of AIRS spots in the scene. This is the correctionneededto
maketheobservedbrightness temperaturesmatch the truevalues.
Thesecondpanel shows thedifferencebetween the reconstructed

brightness temperatures and the average observed values. This is
the correctionmadein the cloud clearing. The third panel shows
the difference between the reconstructed clear columnbrightness
temperature and that computed from the truth. This is theerror
in the reconstructed clear column brightness temperature. Also
shown in the third panel of the RMS statistics is the single spot
channel noise.

In the mean sense, “essentially clear” spots needed an average
cloud correction of roughly 0.1 K in the 800-cm–1150-cm
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region, and essentially none was made on the average. This
resulted in a small cold bias in this window region in the re-
constructed clear column brightness temperatures. In the RMS
sense, corrections of up to 0.25 K were needed in the longwave
window for these cases (some of this is due to channel noise)
and corrections of about 0.1 K were made. For the most part, the
RMS values of the reconstructed brightness temperatures were
comparable to, or smaller than, the single spot channel noise.
Lower values can arise if either the channel is considered not
to see clouds (the noise amplification factor is 1/3) or the scene
is considered clear or contains very small values of, resulting
in noise amplification factors less than one, provided accurate
values of are obtained. Radiances for “essentially clear” cases
are definitely suitable for data assimilation purposes.

Fig. 4 shows analogous statistics for the 4604 accepted cases
for all cloud conditions. On the average, cloud corrections of al-
most 12 K were needed in the longwave window region, and the
correction made was slightly smaller than needed, with about
a 0.5-K negative bias in reconstructed clear column brightness
temperatures at the worst frequencies.

In the RMS sense, reconstructed clear column bright-
ness temperatures were still comparable to channel noise
throughout most of the temperature profile sounding regions
(650 cm –750 cm and 2200 cm –2400 cm , but larger
than the noise elsewhere in the spectrum. RMS errors in the
water vapor sounding region are still very small and radiances
in these channels, as well as those in the temperature sounding
region, should be suitable for data assimilation. We encourage
researchers in the field of data assimilation to test the use
of radiances for all accepted cases. This would substantially
increase the number of cases which can be used and should
further improve forecast skill compared to use of radiances in
just clear or essentially clear cases.

Fig. 5 shows RMS temperature errors for the 4604 accepted
cases, as well as for the 431 essentially clear cases. Errors are
shown for layer mean temperatures in roughly 1-km layers from
the surface to 300 mb, 3-km layers from 300–30 mb, and 5-km
layers from 30–1 mb. Results are shown for both the regression
guess and the final physical retrieval. Errors of the surface skin
temperature are indicated in the figure, as well as average RMS
temperature profile errors over the layers 700 mb to the surface
and 100 mb to the surface. The physical retrieval improves con-
siderably over the regression based retrieval in both clear and
cloudy cases with the largest improvement near the surface. In
cloudy cases, part of this improvement is due to use of more ac-
curate clear column radiances as the final physical retrieval uses

while the regression uses. In addition, the regression coef-
ficients are based on radiances for clear cases, in which channel
noise is uncorrelated and lower than for cloud-cleared radiances.
These are not factors in clear cases however, which still show
significant improvement in RMS errors of the physical retrieval
compared to regression near the surface. Retrievals under the
multi layer cloud cover used in this simulation (average cloudi-
ness of the accepted cases is 31%) degrade over those in clear
situations beneath 150 mb, but are still of high accuracy. Av-
erage tropospheric RMS errors are 0.82 K, and average lower
tropospheric errors are 0.92 K, both exceeding or essentially
meeting the 1-K RMS error requirement for AIRS. The RMS

Fig. 7. RMS humidity profile percentage errors.

error in the lowest 1 km (1.06 K) slightly exceeds 1 K, however.
Skin temperature errors are 0.25 K for clear cases and 0.59 K
for all cases. These include land cases and are affected by un-
certainties in surface spectral emissivity.

Fig. 6 shows mean and RMS errors of retrieved surface skin
temperature and temperatures in 1-km tropospheric layers up
to 344 mb for accepted retrievals as a function of actual cloud
cover. Also shown is the mean and RMS clear column brightness
temperature error for the 937.8-cmwindow channel. Mean
and RMS errors for most temperatures are not very sensitive to
cloud fraction. Negative biases are found, which increase slowly
with increasing cloud cover, for the longwave window channel
radiance, the surface skin temperature, and the temperature in
the lowest kilometers of the atmosphere. RMS errors of all pa-
rameters increase slowly with increasing cloud cover, especially
for the lowest kilometers of the atmosphere.

Fig. 7 shows RMS percent errors of the water vapor retrievals,
weighted by water vapor amount in the layer, for integrated
column water vapor in roughly 1-km layers from the surface to
200 mb. The RMS percent errors of total precipitable water are
also indicated in the figure. Clouds do not degrade the retrieval
profile accuracy appreciably. Part of this result may be due to
sampling differences between clear and cloudy areas.

Clouds degrade the total precipitable water accuracy by 2.5%,
but the 3.8% error of total precipitable water for all cases is still



408 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 2, FEBRUARY 2003

Fig. 8. Ozone profile retrieval errors.

extremely good. The 1-km layer precipitable water errors in the
troposphere are generally better than 20% in the cloudy cases
in layers up to about 235 mb. Clear cases RMS percentage er-
rors are worse than all case errors in the mid-upper troposphere.
However, the actual RMS errors are larger in the cloudy cases;
which are considerably moister in the mid-upper troposphere
than are the clear cases.

Fig. 8 shows weighted percent errors in the ozone profile re-
trievals in roughly 4-km layers from 260–2.15 mb and in one
coarse layer from 260 mb to the surface. Also shown is the per-
centage error in total ozone, which is 2.4% for clear cases and
2.6% for cloudy cases. The RMS profile errors are better than
8% in all layers in both clear and cloudy cases. The physical re-
trieval improves tropospheric ozone retrievals considerably over
what is obtained by regression.

The accuracy of cloud parameters cannot be compared in a
straightforward manner because of the existence of two cloud
layers in some (most) scenes. The retrieved cloud fractions are
effective, both because of errors in retrieved cloud top pressure
and assumed cloud spectral emissivity. In the retrieval process,
cloud spectral emissivity was always assumed to be 0.9 while
the true cloud spectral emissivity varied a few percent from that.

TABLE IV
RETRIEVED CLOUD FRACTION AND OLR ERRORS

Two straightforward parameters to compare are total cloud frac-
tion , and OLR. The OLR validates the cloud parameters,
as well as all other parameters, in a radiative sense. Clear-sky
OLR is also useful to validate all parameters with the
exception of clouds. Accuracies should be better for accepted
cases than for rejected cases, because cloud products and all
other parameters for rejected cases are based on the AMSU re-
trievals which are less accurate.

Table IV shows statistics for retrieved cloud cover, OLR and
clear-sky OLR for accepted and rejected cases. The errors for
rejected retrievals are poorer than for accepted retrievals, but all
products should be useful for climate studies.

The OLR product is complementary to OLR measured more
directly from CERES, also on the Aqua platform, in that the
AIRS derived product will explain variations of OLR and
clear-sky OLR in space and time in terms of variations of
surface and atmospheric parameters, including cloud cover and
height.
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