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Retrieval of Atmospheric and Surface Parameters
From AIRS/AMSU/HSB Data In the
Presence of Clouds

Joel Susskind, Christopher D. Barnet, and John M. Blaisdell

Abstract—New state-of-the-art methodology is described to teristics of the AIRS instrument are given in [18]. The results
analyze the Atmospheric Infrared Sounder/Advanced Microwave shown in this paper are based on simulated data. A preliminary
Sounding Unit/Humidity Sounder for Brazil (AIRS/AMSU/HSB) — as5assment of AIRS data shows excellent spectral and radio-

glaggylnfot?ne]sprtﬁseer;;iigf frgrulttrl]pele Aclllggd Sf;cg;egéor]rse.a?ealrggmﬁg; metric performance. It takes many months to stabilize the AIRS

which will be used to analyze AIRS/AMSU/HSB data on the instrument after launch and then to properly characterize the
Earth Observing System Aqua platform. The cloud-clearing channel spectral response functions in space. Retrievals using

methodology requires no knowledge of the spectral properties of gctual AIRS data will not be produced operationally until one
the clouds. The basic retrieval methodology is general and extracts year after launch.

the maximum information from the radiances, consistent with : . ' .
the channel noise covariance matrix. The retrieval methodology Susskindet al. [23], described the first version of the

minimizes the dependence of the solution on the first-guess field Methodology used by the AIRS Science team to analyze
and the first-guess error characteristics. Results are shown for AIRS/AMSU/HSB data in the presence of clouds to deter-

AIRS Science Team simulation studies with multiple cloud forma- mine surface skin temperature, surface spectral emissivity
tions. These simulation studies imply that clear column radiances and bidirectional reflectance, atmospheric temperature—mois-

can be reconstructed under partial cloud cover with an accuracy ¢ fi d the height d ts of diff t
comparable to single spot channel noise in the temperature and ure—ozone profie, an € heights and amounts ot difieren

water vapor sounding regions; temperature soundings can be layers of clouds in the fields of view (FOVs). Two important
produced under partial cloud cover with RMS errors on the order ~ characteristics of the basic retrieval methodology are that
of, or better than, 1 °K in 1-km-thick layers from the surface to g assumptions are needed about the spectral properties of
700 mb, 1-km layers from 700-300 mb, 3-km layers from 300-30 {ha clouds and no assumptions are needed about the intrinsic
mb, and 5-km layers from 30—1 mb; and moisture profiles can ) ) . .
accuracy of the first guess field used to start the iterative

be obtained with an accuracy better than 20% absolute errors in ] : ) .
1-km layers from the surface to nearly 200 mb. process. This paper describes further theoretical improvements

Index Terms—nfrared measurements, inverse problems, @n the retrieval and_ cloud-clearing met_hodology incorpo_rated
iterative methods, linear approximation, matrices, microwave IN the current version of the AIRS Science team algorithm,
measurements, moisture measurements, remote sensing, satelliteswhich will be used to analyze AIRS/AMSU/HSB data on
temperature measurement. the EOS Aqua platform. The following sections will describe
the basic methodology used to estimate cloud-cleared AIRS
radiances, which are subsequently used to retrieve surface and
atmospheric geophysical parameters other than cloud param-

HE ATMOSPHERIC Infrared Sounder (AIRS) is a higheters as well as to derive the effects of clouds on the channel
spectral resolution(/ Ar ~ 1200) infrared sounder, with noise covariance matrix; describe the inversion methodology,
2378 channels covering the spectral domain 650-2675'cmyhich makes strong use of the channel noise covariance matrix
which was launched on the Earth Observing System (EOg)d is applicable to solving for all the geophysical parameters

Aqua platform on May 4, 2002, accompanied by the Advancggcluding cloud parameters; and show sample results from
Microwave Sounding Unit A (AMSU-A) and the Humidity A|RS Science Team simulations.

Sounder for Brazil (HSB), the HSB being similar to AMSU-B.
The AIRS footprint is 13 km at nadir, as is the HSB footprint,
with a 3 x 3 array of AIRS and HSB footprints falling into
a single AMSU-A footprint. Spectral and radiometric charac- Clouds have a significant effect on observed infrared radi-
ances, and can have smaller but non negligible effects on mi-

|I. INTRODUCTION

Il. CLOUD-CLEARING METHODOLOGY
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radiances, from observations in a number of adjacent FO\A&nd a portion of the scene, as observed from above, corresponds
An example of the first approach is given in [6]. Eyre [7], [9}0 cloud type 1, cloud type 2, or the surface. If the upper cloud
has used the second approach in simulation by assuming antype is semitransparent, then a portion of the scene can corre-
known homogeneous amount of black clouds at an unknowpond to cloud type 1 overlaying the surface, cloud type 1 over-
pressure, and attempted it with real TOVS data as well [8]. Olaying cloud type 2, cloud type 2, and the surface. In such a case,
approach, like that used in [24], is of the third type and is an ethiree cloud formations will exist in general even if the relative
tension of that used in [3], [4], and [21]. The advantage of themounts of each cloud type are as initially stated above.
approach is that it does not have the clear-sky sampling bias offThe methodology we use to determing is general for
the first approach, nor does it require the ability to accuratehandling up toK” — 1 cloud formations. The simulations done
model the spectral emissive, reflective, and transmissive prdyy the AIRS Science Team, and shown in this paper, used
erties of the clouds, and their dependence on the vertical micessentially two cloud formations of gray clouds with differing
physics and geometry, as required by the second approach. &ahmunts of clouds at two discrete levels in each of the nine
key assumption made in the third approach is that while theA¢RS footprints within an AMSU-A footprint. The cloud spec-
may be many types of clouds in the different FOVs, the radi&ral emissivities and cloud top pressures were allowed to vary
tive properties of a given type of cloud are identical in all FOVslightly between FOVs, however. Surface skin properties also
which differ only in the relative amounts of these cloud typetiad some variability between FOVs. This allows for multiple
Fields of view containing clouds with the same optical propedegrees of freedom within the :3 3 array of AIRS spots in a
ties but at different heights, or clouds at the same height but wiimngle AMSU-A footprint.
different optical properties, can be considered as having mul-Susskindet al. [23] used the nine AIRS spots within an
tiple cloud types. The other key assumption of this approachA8/1SU-A footprint to construct three FOVs used to determine
that the FOVs have the same characteristics in the clear portidws values of) to be used in (1). Field of view 1 was comprised
of their scenes, with unknown temperatures, humidities, etc. tlidtthe average of the observations in the three warmest spots
we are trying to solve for. We have used analogous assumptiamsan 8um window channel, and FOV 3 was the average
in analyzing 23 years of TOVS data on board the NOAA opf three coldest spots. We now use all radiances in all spots
erational satellites [24] and shown that retrieval accuracy dossparately and determine nine valuesnofGiven 7y, clear
not degrade appreciably with increasing cloud cover [2]. Anatolumn radiances for all channels can be obtained from (2).
ogous assumptions are made by NOAA/NESDIS in productidxs in [23], we determine the valuesand from observations
of their clear column radiances used in generation of operatiomala selected set of(=76) cloud-filtering channels that are
HIRS2/MSU retrievals [17]. primarily in between lines in the 1pm CO, band and in the
Using these assumptions, Chahine [4] has shown that in th@-um CO, bandhead region, with some additional channels
case ofK — 1 cloud formations, observations i§ FOVs are in the window regions. If, for each channiebne substitutes an
needed to obtain channitlear column radiance’; according estimate ofR; crr for R; in (2), this givesl equations fork’
to unknowns. The unconstrained weighted least square solution
to this multilinear problem is given by

K-1
Ri=Ri 1+ e (Rij1 — Ri, k41-k) 1) —1
; NKx1 = [ARIN_lAR] KxK AR/N_lARCLR 3)

where R; . is the channet observation in FOVk. We have whereAR is al x K matrix with AR; , = Rave — Ri &,
found it is advantageous (as suggested by L. McMillin) to eXx R, is an x 1 matrix given byARi,CLR — Ri,CLRI _
trapolate the radiances in thi¢ FOVs according to a similar r; ,y; andN is anl x I channel noise covariance matrix.
equation of the form The nine radianceR; ;. are observed at three different zenith
angles. Having observations at different zenith angles will cause
additional contributions té\ R that are not due to differences in
cloud cover. To remove these, we adjust all observed channel
radiances to what they would have been if taken at the central
where R; avg is the average radiance of all FOVs. Optimatenith angle of the & 3 array of AIRS spots according to Gold-
values ofy;, will give true values off?; up to instrumental noise berget al.[11]. From now on AR refers to adjusted observed
effects. radiances.

Cloud formations should be distinguished from cloud types. The key to the accurate determinationspis obtaining the
For example, if three FOVs are considered, and two cloud typesst estimates oA R; crr, along with an accurate treatment
exist, with cloud top pressures at 300 mb and 700 mb, and thiethe noise covariance matriX. As in [23], we assume the
respective cloud fractions as seen from above are (10%, 20%9)ise in channel used to determing is dominated by errors
(20%, 40%), and (30%, 60%) in each FOV, then only a single AR; cir. The values oAR; c1r that we use to determine
cloud formation exists with cloud fractions of 30%, 60%, and (and R;) are iterative and are computed based on the current
90% in each FOV, respectively. If instead, the third FOV hadest estimate of all relevant surface and atmospheric properties.
cloud fractions of 30% and 65%, then 5% of a second clodbr optimal results, it is important for the estimated geophys-
formation exists in the third FOV only. The above discussioical parameters to be unbiased over large regions of the atmos-
applies only to cases in which the upper cloud type is opaqumere. For example, if the estimated temperature profile were

K

R; = Ri ava + Z Me(Ri, ava — Ri k) 2
k=1
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uniformly too warm, values oA R; c1.r would all be too high whereA(n;) is the noise amplification factor, given by
and incorrect values of;, would be obtained which would re-

construct too high values @t,. To avoid this, we make sure that ° /1 9 21 1/2
the profile used to estimate;, c.r is consistent with observa-  A(n) = | Y 51+ > k) = . (6)
tions in all AMSU-A and HSB channels, thus insuring an unbi- k=1 k=1

ased temperature and moisture profile over coarse layers inthe ) 211/ )
atmosphere. It would be a mistake to use an analysis or a fofkZlx) iS approximately equal t¢) n;]*/* because the first
cast field directly to comput&; c1.r because this field, while term, containing the factor 1/9, is small. It is desirable to find an
potentially accurate, could be biased in the vertical. accurate expression for clear column radiance that minimizes

The iterative methodology to determine clear column radi (7). We can minimizeA(n;) by expressing (2) in terms of
using four sets of conditions, described later, to estimaiiéns of the original set. The optimal(r;) can be found by
R™ oy, in which R? o, . and hencej”, become increasingly transforming the original contrast fields, to a new Adt} ac-
more accurate for each iteration. Each set of conditions Hg&ding to
its own N, reflecting expected errors iR - r — R 1. o
The diagonal term of the noise covariance matrix is modeled AR = Z Uk, k- AR, 1 ™
according to K

where U is the unitary transformation that diagonalizes

aTQ C v; Vi
on. 1 T om : [0 (AR NTHAR) U =M B (8)
+ [8/% 5”"7} + [BT(P) 8T(P) ] This is equivalent to having selected
2
OR; 6q(P)" R{ = Rave — Y Uk x (Rava — Ri). 9)
! One eigenvalue\;, is always zero because only eight linearly
and the off-diagonal term is given by independent values @t R; , exist. In transformed space
n_ OR; aRJ N2 OR; aRJ nocm . Kmax
0= ar, ar, ") T ae, ae, (Be5,8e5, )+ (4b) Ri=Riava+ Y G-ARE, (10)
k=1

where N EAN; is the channel instrumental noise and the re- . L
- N . and the solution fot;, is given by
maining terms are contributions to errors in the computed valtue
R;, cur resulting from errors in estimated surface skin temper- Go= AT (ART' N -ARCLR) (11)
ature, surface spectral emissivity, surface spectral bidirectional '
reflectance of solar radiation, and temperature and moisture pro- r
P X %ereAR?k is the transpose dk RT, .

file, respectively. The partial derivatives are determined empW—It_ rent that | . lesimoly | |
ically by computing the radiance using the current estimate of . IS apparent that large eigenva uegsimply low values Ok
le small eigenvalues imply large (and undesirable) values of

each parameter and recomputing it after a small change in th- . g
parameter. In [23], the uncertainties, SUCHE, are specified (k- The eigenvalues themselves indicate the degrees of freedom
. ' T in, the radiances in the different FOVs corresponding to the

so as to be indicative of the expected errors for that parameI . . .
ifferent number of cloud formations. Typical cloud formation

in passn. We now predict these errors on a profile by profil | h q £1000. W di 4 all e I
basis for each pass by propagation of expected sources of effdf"values are the order of 1000. We discard all eigenvalues
$S than 25 and séf,,,.. accordingly, with the constraint that

through the retrieval process in a manner to be described latg ) han f We also d includ
A principal source of retrieval error arises from errors in the r(ilgmaX IS never greater than four. We also do not include any

constructed clear column radiances. These errors propagate% r_lfunctlon \_Nhose e'g_e”"a'!Je IS Iess_, than the uncertainty in
degraded estimates of all the variables shown in (4). Ck, given later in (13). Discarding low eigenvalues reduces the
noise amplification factor by suppressing noise in the solution

of g = Zkl,‘:“:‘“f Uk, 1 - G, resulting in lower values af.
Under certain pathological conditions, one or more cloud

The effe_cts of instrumenta_l _noise on _the clear col_umn radsymations may not result in significant eigenvalues of
ances will in general be amplified from single spot noise valuésp/ nr—~1 AR and cannot be solved for resulting in a poor
because the clear column radiances are expressed as a ligggfiion. The most obvious example of this is a single cloud
combination of the observations in different FOVs. If there werg . ation with a constant cloud fraction in each FOV. Here

no other sources of error, the diagonal term of the clear columy, s comprised of noise only. The most common examples
radiance noise covariance matrix in a given pass in (2) would B€this are all FOVs are clear, which is a benign case, or all

L, ) ) FOVs are overcast, which is a case which must be otherwise
[612 . 6R} = NEAN; - A(nk) (5) identified and rejected. Likewise, with two cloud formations,

kA2

Selection of Optimal Fields of View
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if the lower cloud deck is overcast, a proper reconstruction of For a channel to be determined not to see clouds, it must be
the clear column radiances cannot be obtained. In this casandluded in a list showing a 95% probability of not seeing a
the cloud fraction of the upper cloud in FOV kadsy, then the cloud, which is precomputed as a function of cloud top pres-
lower cloud fraction as seen from abovey, is1 — ajx. In sure and zenith angle. In addition, the standard deviation of the
general, ifasr, = A + Bayy, for all k, then cloud formation 2 radiances in the X 3 array of AIRS spots must be less than
will have a zero eigenvalue df ' N~ AR up to noise effects. twice the channel noise.

The benign case occurs whén= 0, corresponding to a truly  For channels which see clouds, the clear column noise covari-

single cloud formation. ance can now be expressed as

Contribution of Clouds to the Retrieval Channel Noise . TS o

Covariance Matrix)\/ M;; = NEAN; NEAN; A(mi)*6i+ Y, (ARLARGAY).
The basic retrieval methodology described in the next sec- = (16)

tion requires a channel noise covariance matfixepresenting Errors in clear column radiances can be larger than predicted by
channel correlated errors in the ter(ig — R}*) and(R; — R7*)  (16), however, becausk, " is just an estimate ofs¢ 6¢')p -
whereR}" is the radiance computed for channdlased on the Moreover, (16) does not take into account contributions to the
mth iterative solution. The channel noise covariance matrix iise covariance matrix arising from higher componentg of
the sum of two parts, resulting from noise in the reconstructedt solved for k > Kn.x) as well as fitting errors due to a poor
clear column radiances?; with noise covariancé/, and noise first guess. Another estimate of the error in thearameters can
inthe computed radiancé#;" due to uncertainty in the param-be computed using weighted radiance residuals in the channels
eters assumgd lfnown, with noise covarianfée used in the cloud-clearing retrieval; ci.r — R;. If we take

M;; = [6R6R'];; is the expected noise covariance matriR; «r — R; as the uncertainty oA R; crr, then using (11),
for the channel clear column radiances. The nois&jmob- we estimate the uncertainty (p according to
tained from (2) has two parts, arising from instrumental noise ) )
N EAN;, and from cloud-clearing errors coming from errorsin [z ¢ » (1 T —1)2 -
(. Errors in¢;, will cause channe?correlated cle%r column radi- [6C 5 } kk <)\_k> Z (AR N7 (Ri’CLR B R7)
ance errors. Clear column radiances for those channels affected ' a7)
by clouds will have this additional error due to errorglirfFor which we evaluate for all significant functioris with X, >
the AIRS instrument, the channel noise is spectrally uncorred—2. This includes eigenfunctions witk, < 25 and therefore

lated, giving the final result not included in the solution fak;. For values of < K pnax, We
R , take
[612513’} = NEANZ A(ni,)? + [ART6C 8¢’ ART } ) B
: R L U
and o , and for values of: betweenk .. and K, (significant eigen-
[5361{'} = [ARTéc 8¢’ ART } ) (12b) values), > 10-3) we set
¥} 1]
wheres(¢ §¢" is the error covariance af If N, as defined in (4), [6¢ 8¢, = [5C 55’} (19)
is indeed representative of the noise in the determinatioy of
then it can be shown [see (38)] that and write
’ -1 Y
[0 6¢ 3y = [ART N*lART} = A O (13) Mij = NEAN; NEAN; A(nr)? 85
Kisig
In the special case for which we determine that chandeles + Z ARYL AR]Tk [6¢ 8¢, - (20)
not “see” the clouds (i.e., stratospheric sounding channels or k=1

tropospheric sounding channels peaking significantly above gse

. . . : ne can think of (20) in terms of a different effective noise am-
highest cloud top), the clear column radiance is best describe : .
) : Ification factor A; . for each channel
the average radiance in all FOVs. For these channels, the sceéne ’

appears to be clear and we can define effective valugs'df M;; = NEAN? A2 (21)
for “clear” channels ag{™® = 0 for all k. For these channels Coet
[see (6)] where
1 . 1/2
CLR ; 2
A (SR = 3 (14) , 5 ART[6¢6C

o . . Aj o = [A(m)> + Y —~Ean: | - @2

which is a noise reducer. For “clear” chanmgbne can write k=1 i
M;; = 1 NEAN? 6, (15) The channel effective noise amplification factor is largest for

channels which see the surface and have potentially large
wherej is any other channel ardg; is the Kronecker delta func- values of the scene contra&tR; ,. We find it convenient to
tion. define an effective noise amplification factor relevant to the
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surface channel retrieval step as the RMS valud ofs over lIterative Least Squares Solution to the Nonlinear Problem

all NSURF IR channels used in the surface retrieval step The solution to each of the five steps described above is done

in the form

NSURF 1/2

E 14’L',eff2
i=1

1

A = ————
f = NSURF

L L
23) X" =X""1 4 3 FAAr = X0+ ZZ F A7 (29)
=1

(=1 =

whereX™ is themth iterative statel is a set ofL functions,
Very large values ofd.g can arise whed(6¢’ is large Ber  and

is sometimes 100 or more) and indicate a large uncertainty in

the determination of the clear column radiances. These large 7= A7 AAD (25)

uncertainties are sometimes caused by hidden, or nearly hidden

cloud formations, and often correlate with poor solutiong\A}’is determined each iteration so as to minimize the resid-
ualsA®™, weighted inversely with respect to expected noise
levels, for the channels used to determitie The residual for

channell is defined as
I1l. BASIC RETRIEVAL METHODOLOGY

N : A
The basic retrieval methodology is the same as that of [23] AG = (Ri - R ) ( dT )@m (26)
and is reviewed below. After a startup procedure to determine :
the clear column radiances, we use AIRS/AMSU/HSB data {there R, is the reconstructed clear column radiangg, is the

retrieve the following: radiance computed from theth iterative parameters, artt™
a) surface skin temperature, surface spectral emissivity, @adhe brightness temperature corresponding?fo. The mth
surface bidirectional reflectance of solar radiation; iterative residual for channéls attributed to errors in the coef-
b) atmospheric temperature profile; ficients6 A™ and to the noise effects
¢) atmospheric moisture profile; .
d) atmospheric ozone profile; AOT" =" Sy 8AT +6; (27)
4

e) cloud properties.

These steps are done sequentially, solving only for the variab¥ggere S;, is an element of the sensitivity matrix, or Jacobian,
to be determined in each step and using previously determir@igen by
variables as fixed but with an appropriate uncertainty attached .
to them which is accounted for in the channel noise covariance m _ OR" (dBi) 28)
o

matrix M. The objective in each step is to find solutions which T 94, \ dT
best match the observations for a select set of channels, bearing
in mind the channel noise estimates. The “observations” @md the noise facto®, for a given case has two parts: errors
Steps a)-d) are the clear column radiances as determiffedbserved clear column radiané®; that are affected by in-
from (10) and (11), with values af°™! used for appropriate strumental noise and cloud-clearing errors, and computational
channels. The cloud parameters determined from Step e) acésesOs.
found so as to be most consistent with the actual observedn the simulations done thus far, we have assumed perfect
radiances and the clear-sky geophysical parameters determikieolwledge of physics, i.e., if we know all of the variables ex-
from Steps a)-d). Steps a)-d) are ordered so as to allow &mtly, we can compute exact noise-free radiances. Nevertheless,
selection of channels in each step which are primarily sensititlee transmittances depend on the variables to be solved for.
to variables to be determined in that step or determined inTaerefore, computational noise exists. Computational noise,
previous step, and relatively insensitive to other parametessising from errors such as a low (high) estimate of atmospheric
Separation of the problem in this manner also allows for thveater vapor, will produce noise that is spectrally correlated.
problem in each step to be made as linear as possible. Stey$rumental noise is spectrally uncorrelated but cloud-cleared
a)—e) are all solved for in a completely analogous manneadiance errors are correlated. Each retrieval step impasses
linearizing the problem about initial guess parameters amad appropriate noise covariance matrix
iterating the solution until convergence is reached. In general, o =
these linear equations are ill conditioned and require some Mo — (M" +M~) <dBi> (@) 29)

- . . . . ) 2 9
form of stabilization, which is commonly based on an estimate J dr dr
of the accuracy of tha priori information obtained in the first
guess or background field [19], [12]. The methodology wevhere M was defined in (20).
have developed, described in the next section, relies exclusivelyfThe matrix M in (29) represents channel correlated uncer-
on the signal to noise of the observations to indicate tiainties in the computed radiancBg' andR* based primarily
degree to which the information contained in the radiances uncertainties in the parameters being held fixed in a given re-
should be believed, and does not involve use of an estimateval step. For example, when we are solving for temperature
of the accuracy of the background field. profile, we are holding fixed surface parameters, moisture

O; O;
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profile, and ozone profile. We currently write error covariance is not known or estimated incorrectly, the so-
9 9 9 lution will be suboptimal. If thea priori errors are underesti-
~ 0B; OR; OR; i i i
M;; =012 ( L> n ( i 6Tq> ( L se, ) mated, the solution could be overconstrained. This could poten-
B or ) o, aT, ey, tially create biases in the retrievals. The biases may mask small

) 2 trends in the retrieved data that one may be trying to extract. The
n (% 5p ) <ﬁ 5Q(P)> approach described here attempts to keep the effects of instru-
apy,, 9a(P) ¢ ment noise at a tolerable level without assumptions regarding
) ! thea priori data error covariance.
( OR; 503(]3)) Our objective is to determine a constraint matrix that affects

905(P) ~ (g (30a)  only the pieces of information not well determined by the radi-

Os ances. This involves use of an optimal set of functiGheelated
and to F by a unitary transformation
~ OR; OR; 9

The terms in (30a) and (30b) do not depend to first order @R terms of which we could write

the variables being solved for or the iterative stateThe term

0.12 included in (30a) is taken to represent additional uncertain- Xm=x""1,_LGgAB™ = X™ 1 L FUAB™

ties in computed brightness temperatures based on the imperfect —X™ 1y FAA™, (33)
knowledge of the variables being solved for, as well as poten-

tial spectroscopic errors. The methodology used to predict ajtkerms of the functions?, (31) becomes

propagate errors such &% for use in the computation a¥/

yvill be discussed I.ater: These t_erms are ar.lalogous.to the tergm _ pragm — (Um’Sm'M*SmUm n Hm)_l

in (4), but uncertainty irO3 profile was not included in (4) as

it did not prove to have a significant effect on the solution and U™ S M (ae™ — 6@7"_1) . (39
the calculation is computationally expensive. In analyzing real

data, we modify computed radiances to account for errors in thenew terms©™ ! has been included in (34) which is a back-
physics in a manner to be described elsewhere. Additional tergisund correction term that is zero in the first iteration and will
in the channel noise covariance matrix can account for residii@ discussed in detail later. The optimal transformation matrix

uncertainties in the computed radiances. U™ is chosen so that/™ ™ M~15™U™ is diagonal with
o . eigenvalues,. The inverse of each eigenvalue is the variance of
Application of a Constraint{ eigenmode?,. The unconstrained solution, with baff; = 0

The standard constrained solution [12] to this problem fd with no background correcti¢h®™ = 0), is given by
given by .,
B ABP(0) = (A7)~ (Um s M—l) AO™
Aam = [sm Mt sm 4 ™) s M Ae™ ) ‘

= (A7) diraem (39)
— DA™ 31)
_ o o o whered;" is the (th row of U™ $™ M~". Low values of),,
whereH™ is a stabilization matrix. Without stabilizatioHAA  jndicating ill-conditioned variable§/,, would lead to large co-
would minimize the weighted residuals®’M~A®, but the  efficients of A©™ in the determination ol B if the solution

matrix elements of) might be large. This is undesirable as ifor the coefficients of these functions were unconstrained. We
amplifies errors iPA©™ in determiningA A™. The key t0 0p-  therefore only constrain the solution of those functiGhswith

timization of the solution lies in accurate treatment of the termg,y eigenvalues and séf?, = A5, . The constrained so-
A©, S andM; a judicious choice of the function's and chan- |ytion is now given by

nels:; and optimal treatment of the constraint matflx Hanel
et al.[12] and Rodgers [19] have reviewed several methods of, _,. m AV m m m
constraining the ill-conditioned inverse problem. In the min- 2B (AX) = A+ AN AB(0) = &7 AB(0) (36)
imum variance approach [19 is taken to be the inverse of the
a priori error covariance. If the statistics of both the measuréhere® is a damping factor equal to unity if no constraint is
ment anda priori are Gaussian, the maximum likelihood solu@Pplied and zero il A, is infinite. If &, = 1, all the information
tion is obtained. If tha priori covariance is taken to big = ~I, aboutG, obtained from the radiances is believed. Otherwise
the maximum entropy solution is obtained. Other form&ah- only @, of the information in the radiances is believed, #he-
clude the first or second derivative formulations [25] that forc&¢) of thea priori information is believed.
a smoothness constraint on the solution. The solution can alsd he objective of damping a mode is to reduce propagation of
be constrained by the relaxation method [5] and by the Backi@is€dBe(AA,), which is given by
and Gilbert [1] method. . ., .

The minimum variance and maximum likelihood solutions B7" (AA]") = (A7 + A7) (Um s M_l) 60™

are often considered to be “optimal.” However, if thgoriori ‘ (37)
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wheres©™ is the noise inA®;. A statistical estimate QTB?‘ second order convergence along the lines discussed in [19] with
over an ensemble of profiles is given by regard to treatment of the priori term.
1/2

§Bo(Ay) = [51?7” 5[3’"1} u{

Convergence Criteria
In solving (42), we are attempting to find solutions to the

=\ + ANt radiative transfer equations that minimize weighted residuals of
T - VI 1/2 observed and computed brightness temperatures, corrected for
m o qgm 1 / lgmyrrm ’
' [U ST M7 0000 MTSTU Lg the background term. To test convergence of the solution, one
(AT)1/2 should monitor the weighted residual
= o = 2 ()T (38)
AT+ AN 1/2

R =[(AO — §0) V' V(A® — §0)] (43)
to the extent thafl/ accurately represent&§0’, the noise . _ _
covariance ofA®. We assign a noise propagation threshowhere the WEIth matri¥” accounts for noise effects on the

ABu.x for each type of retrieval (surface properties, tempeghannel residuals, as well as the relative information content
ature profile, etc.) and se¥\; = 0 if §B; (0) < ABp.y. Oth- Of the channels with regard to the variables being solved for.

erwise, we obtaim\\, such thab B,(A\;) = ABiax. For example, if a channel (or linear combination of channels)
carries little information content in terms of signal to noise, it
Formulation of the Background Term should be given little weight in the estimation of the residual

The need for an iterative process arises because the radiafMé3)- An appropriate choice df, expressing the informa_tion
transfer equation is not linear. In every iteration, we recompu‘f@r/m?”t (zf:“lth_e channels, would thereforelbe= (A, + AA()
o, as well ass™, U™ and A™. If the solutions were com- (U'S"M™"), in which case we obtain

letely linear, and we applied no damping, then
pletely PP ping R =[AB' AB]'/2. (44)

AO"H(0) = 6 — O™11(0) 2 AO™ — S™ U™ AB™(0)
(39) As shown in (44), a reasonable way to determine if the solution
has converged, in terms of weighted residuals of observed minus
and AB™*!(0) would be determined to be zero becauseomputed brightness temperatures, is to see if the solution has
AB™(0) would have already minimized the residudl®™. converged in terms of the iterative changes in the solution itself.
The residualA®™*! is not zero however, both becausenitially, we setAB; = 0 if ®} < 0.05, that is, coefficients of
©™+1(0) is not given exactly byo™ + S™U™AB™(0) as a very heavily damped components with little information content
result of nonlinearity, and becauseB;” # ABJ* (0). As a are not believed at all in any iteration. The solution is said to

result of applyingA B} rather thamA B}*(0), we obtain have converged when the root sum square (RSS) valngjf
. _— o . . is less than 10% of the RSS valued® ™ for all components
A®© ~AO (0)+S5™U™[AB™(0) — AB™] not set equal to zero. The iterative procedure is also terminated
=AO™1(0) + §0™. (40) if the RSS value of\ B is not less than 75% of that &f B} ~*

for the nonzero components. This indicates the solution is not
In(40),A®;"“(0) represents the portion &f©™*! thatis due converging rapidly enough and may be responding primarily
to effects of nonlinearity on the solution, whil®™ represents to unmodeled noise. The iterative procedure, which typically
the residual portion ofA®@™*! due to the effects of damping converges by three iterations, is carried out analogously for all
in iterationm. The second term is zero for undamped modestrieval steps.
and increases in significance with increased damping. This term ] ]
is also zero for all modes in the first iteration. We only wanyariables and Functions for Retrieval Steps
to include the effects of nonlinearity ad©™ in the iterative  As shown in (24), all steps involve expression of the basic
procedure used in the determination&f3™. Therefore, the variablesX in terms of a set of functiong’. In the tempera-
background term to be used in (34) is given by ture profile retrieval step, the temperature perturbation functions
F(P) are 24 trapezoids piecewise linear in log of pressure, span-
ning the pressure range 0.016 mb to the surface, with a perturba-
tion of 0.5 K between pressurés andFP;_,,and 0 at P,1; and
P, 5. Inthe top and bottom functions, the top or bottom portion

60"t = smLym=L [AB™T(0) - AB™TY (41)

and we solve foA B}* according to

ABP = (AP + AN~ s Mt [A0™ —50™1] pf the trapezoid i; missing. The Jacqb'&gp is obtained numer-
) ically by computing the channélbrightness temperature for
=0"AB(0) — (A" + AX")” themth iterative temperature profil€™ (P) and subtracting it

A _ _ _ _ from the brightness temperature computed with everything else
m gm 1gm—1rrm—1 m—1 m—1

' [U ST MTSTTUTT (AL (0)-ABy )] fixed but perturbindl™ (P) by one unit ofF,(P). With regard

(42) to water vapor and ozone profiles, we express solutions in the

form
WhereAB;”_1 is the value ofA B, which was applied in iter-

ationm — 1. Inclusion of the background term in (42) insures ¢" TN (P) = ¢™(P)[1 + SAF,(P)] (45)



SUSSKINDet al. ATMOSPHERIC AND SURFACE PARAMETERS FROM AIRS/AMSU/HSB DATA 397

with the functions [ = 11 for water vapor andl. = 8 for TABLE |
ozone) and methodology for computation of the Jacobian being TRAPEZOID FUNCTION ENDPOINTS (mb)
completely analogous to those for temperature profile. In the Temperature _ Moisture Ozone
case of surface variables, the functions are a discrete value of Retrieval Retrieval Retrieval
surface skin temperature, as well as nine triangle functions in 0.016 0.016 0.016
the frequency domain dealing with perturbations of surface 0.714 170.1 20.92
emissivity and three with surface bidirectional reflectance of ;333 gﬁ? ;}gi
solar radiation. The total precipitable water also can be adjusted 4077 3436 103.0
by using (45) with asingle functionwhichis constantas afunction 8.165 4075 1424
of height. The window channels are sensitive to boundary layer 16.43 496.6 300.0
water vapor but not higher level water vapor. Adjustment of gg-gg %Z)'g surface
total precipitable water is used in an intermediate retrieval step, 56.13 852.8
done before the water vapor retrieval step using AIRS channels, 71.54 surface
and improves total low-level water vapor at the expense of 96.11
upper level water vapor. Table | shows the pressure levels used }2(5)“55
in the temperature profile, moisture profile, and ozone profile 212.0
retrieval steps. These pressure levels are a subset of the 100 272.9
levels used by Strowet al. [22] in the AIRS radiative transfer 343.6
calculation. 424.5

596.3

661.2

; 753.6

Selection of Channels 8786

surface

While AIRS has 2378 channels, it is neither necessary nor
optimal to use all the channels in the retrieval process as
the information content of these channels is highly redundant.Window channels are highly redundant with each other and
Therefore, computational time can be lowered by limiting theave been selected generally on and off closely lying weak
number of channels used without an appreciable effect on tiesorption features in the spectral regions from 755 6880
results. In a given step, it is preferable to use channels whictm=!, 1070 cnTt'-1240 cnt!, 2180 cnT!-2192 cnr!,
are primarily sensitive to the variables being solved for, whilend 2390 cm' to 2665 cntt. Cloud-filtering channels are
relatively insensitive to variables not yet solved for. We alsgenerally a subset of the temperature sounding channels which
find it desirable to use channels with sharp localized weightirage sensitive to the troposphere. Our sounding methodology
functions. The channels selected are optimized to be applicaimeolves two temperature profile retrieval steps, one (temp 1)
for all conditions. Kaplaret al. [14] show that channels with before the water vapor retrieval step, and the other (temp 2)
sharpest weighting functions lie either in between absorptisnbsequent to it. In temp 2, we include a number of channels in
lines or on the band head of the 4.8 CO, band between the water vapor absorption band which produce sharp tempera-
2378 cmm! and 2390 cm!. The first set of channels have sharpure weighting functions. These channels are treated as “noisy”
weighting functions because of a rapid increase of absorptionthe channel noise covariance matrix to the extent that the
coefficient with increasing pressure, while the second bengfitedicted uncertainty in water vapor distribution produces an
from a rapid increase of absorption coefficient with increasirgppropriate uncertainty in their computed brightness temper-
temperature in the troposphere. Such channels form the basiasetes. The location of all channels used are shown in Fig. 1.
used fortemperature sounding. Channels in between water vapdar use 53 channels in the surface temperature retrieval, 147
absorption lines also produce very sharp weighting functioskannels in the first temperature profile retrieval, an additional
which are preferable for water vapor sounding and also usefdéven channels in the second temperature profile retrieval, 66
for temperature sounding if the water vapor distribution ishannels in the water vapor profile retrieval, and 23 channels
known accurately. Channels between absorption features @réhe ozone profile retrieval. Some channels are used for more
by definition less opaque than nearby channels situated tian one purpose. Channels also exist which can be used for
absorption features, and may not have sufficient opacity to betrievals of profiles of CH, CO, and CQ. These will be
sensitive to either temperature or constituents at high enoutgsscribed in a future publication.
levels in the atmosphere. For temperature profile, we selecfTable Il shows the eigenvalues and damping factors for the
channels in the COQ branch at 667 cm', which do not second pass temperature profile retrieval, the water vapor re-
have sharp weighting functions but are sensitive to temperattrieval, and the ozone profile retrieval for a typical case. Coeffi-
variations up to 1 mb. We do not select channels in the masénts of eight temperature profile functions are undamped, and
opaque portion of the 4.8m CO, band because these channelthose of two more functions are only slightly damped, giving
are sensitive to effects of nonlocal thermodynamic equilibriurabout nine pieces of information about the temperature pro-
For water vapor, we selected a few channels on the pediks being contained in the radiances. Roughly 4 1/2 pieces of
of some of the strongest absorption features in theu#n7- information about water vapor are contained in the radiances,
water vapor band to increase the sensitivity to stratospheaiad roughly 1 1/2 pieces of information are contained about the
and upper tropospheric water vapor. ozone profile in this case.
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Fig. 1. AIRS spectrum showing channels used in different retrieval steps. Temperature sounding channels are red, ozone are green, waterejaguat are blu

surface channels are orange.

SAMPLE EIGENVALUES AND DAMPING FACTORS(® > 0.05)

TABLE 1l

Temperature Profile Water Vapor Profile Ozone Profile

ABpax =0.75 ABpax =1.0  ABpayx =0.75
A ) A o A )
9440 1.0 6978 10 4159 1.0
65.06 1.0 1031 1.0 0745 0419
36.81 1.0 244 10 0403 0278
2655 1.0 126 10 0139 0079
1219 1.0 068  0.668

696 1.0 027 0270

384 1.0 009  0.095

184 1.0 007  0.069

1.21 0.685

0.80 0.447

0.50 0.281

0.35 0.196

029 0.161

020 0.114

0.11_0.006

Cloud Parameter Retrievals

computeR; cLr. The channels used are the subset of cloud-
clearing channels that are not sensitive to solar radiation re-
flected off the clouds. The cloud parameter retrieval algorithm
is analogous to that of the other steps but slightly different. At
this time, the cloud retrieval algorithm has been tested only for
the case of assumed cloud spectral properties in order to deter-
mine cloud fractions and cloud top pressures for up to two layers
of clouds. The method is easily generalizable to include cloud
spectral emissivity by inclusion of an appropriate set of spectral
emissivity functions as done in the surface parameter retrievals.
With known spectral properties, cloud radiandeg P.) can

be calculated based on the surface skin temperature and atmo-
spheric temperature—moisture—ozone profile, which have been
retrieved from the clear column radiances and are “known,” as
a function of unknown cloud top pressufe. For two cloud
layers (the method works for any number of cloud layers) we
can write

Rii, = (l—ap—aok) Ri, cirta1x Ri(Pe1 ) +aor Ri(Pe2) (46)

In performing cloud parameter retrievals, all other variableshereR;;. is the radiance computed for chania&l FOV & cov-
are assumed known within their estimated errors, allowing usdced by (as seen from above), fractional coverage of a cloud
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at P.; andasyy, of a cloud atP,,. In the above equation, we haveEquations (4) and (30) contain the square of the expected error
assumed two types of clouds in each of the F@Vs 1, 9, with  in state parametex™”, zSX]m2 , Which can be expressed in terms
different cloud fractions in each FOV. All clouds were assumedf errors in the expansion coefficientisaccording to

to have a constant spectral emissivity of 0.9. In order to deter-

mine the variable®,,, P.», a11, a2 ..., We use observations 5)(;'12 - 5X]J.V'2 + Z kafsATZ (50)

in the nine FOVs for the subset of channels used to determine &

7 which are unaffected by solar radiation. The noise covariance

matrix N used to retrieve cloud parameters is identical to thamere(SXjV is the null space error andd™ is the error in the
usedin (4) to determing but for the appropriate subset of chaneoefficientsA™ used to represelX™. Errors in A arise both

nels. from errors in theB3 coefficients and errors in the damped por-
Given themth guess cloud parameterd;,, o3, P, and tion of them — 1 iterative guess. In every step in the retrieval
P, we define process, we begin with parameteXd having an uncertainty
5X]0. The uncertainty of the microwave product first guess is
Y7 =Rix — R} = (Ri x — Ri_cLR) specified based on expected errors, as is the null space error.

m . Given6 X9, §A° can be solved for according to
+ > ofi (Ricir — Ri(PT))  (47) Y
j=1,2 L 971/2
oA = [(F2 F2) 1P (5X° - X))
and obtain the iterative equation

. L 27l/2
ymH _ym - {(F’Q F2)7 (5X°) } : (51)
= R; — R;(P))| Aa”, o . .
,.;2 (i, cun (Fe)] A In a given iteration, we can expre&d4}* according to
J=4
—0R;(P.;) 2
5 o () o
j=21,2 ’ OFci ’ OAY = | 2| Une- ;n
Vi 14
=3 [S’;; MM] IV [S”,g APC],] AP (48) , 172
J=1,2 i=12 2
+ 3 | Uke1=@7)Y Ui AT71 |+ 647
where the terms in the square brackets are the appropriate Ja- ¢ J
cobians, which are computed empirically as are all other Jaco- (52)

bians. It should be noted thatdf;;, (for all k) and/ordR; /9P, ;

(for all 7) are smgll fo'r a.givench, t'hat cloud top pressure will Whereq,?z/\/)\—?l represents the predicted error B due to

be contained primarily in a heavily damped mode and not Bgjise propagation, and the second term represents the portions

changed significantly from the initial guess. of the errorss B;” " of the previous iterative profile which are

believed in the current iteration. Givérd}* from (52) for the

final iterative step, we compute the square of the corresponding
Equations (4) and (30) contain terms suchh@¢P), indica- profile error to be used in (4) and (30) according to (50). This

tive of expected errors in state parameters used in a given pgg is carried to the next retrieval step and used in (51) to give

and step. These errors are case dependent and can be estimaf®avhich is in turn used in (52) to generate the uncertainty in

by propagating expected errors through the retrieval systemggrameterX for use in subsequent steps.

any iteration, the estimate of a parameter, suc’@8)™, is  For moisture and ozone profile, the form of the expansion is

Error Propagation and Channel Noise Covariance Matrix

given by slightly different [see (45)] and we write
3 sqm(P)\* _ (84¥(P))’ ;
Py = 1P+ Y Fedp =1+ Uy, (MO (M) s sy, s
=1 (49) k

wherej is a discrete pressure level. There are three contributioBgrface spectral emissivity and bidirectional reflectance are
to the expected errofT'(P)7". The first contribution comes analogous to temperature profile, as is skin temperature, in
from the null space error, arising from the error of the first guesghich caseF is a number. The liquid water profile comes
in the space outside that of tiefunctions used to expand thefrom the microwave product and is not iterated. We assume an
solution. The second component arises from errors in the cogfror estimate of 20% of the liquid water profile. In addition,
ficients B™. The last contribution arises from the damping off the total liquid water is less than 0.01 g/&mwe consider
the solution in which{ — @) of the first guess (or previous it- the possibility that liquid water may have been missed due
eration) is believed for each eigenfunction to an error in the water vapor microwave solution. For these
low liquid water solutions, an alternative error estimate of
G =FU. (2% RH—1) % 0.05 * ¢, where RH is the relative humidity and
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q is the layer water vapor in milligrams per cubic centimeter, is Step 4)
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considered and used if it is larger than 20% of the liquid water.
The null space temperature error is taken as 0.1 K in the lower

and upper atmosphere, increasing to 0.2 K near the tropopause.

The null space error in percent is taken as 5% for water vapor
and 10% for ozone respectively.

Equation (52) is case dependent through the paraméters
and )\, which depend both on th& matrix and more signifi-
cantly on theM matrix. M contains contributions from clouds,
M, and parameter uncertainty. The uncertainties determined

from (50), (52), and (53) in turn are used in the computation of Step 5)

M [(30)] and N [(4)].

Equations (50) and (53) give the magnitude of the estimated
error in each parameter but contain no information about sign.
If we assume alb X (P) are of the same sign, we would over-
estimate the effect of the uncertainty of that parameter on the
computed radiances. Bearing this in mind, when the derivatives
in (4) and (30) are computed numerically, we write

OR
2X (P)

0X(P)= R(X(P)+ AX(P))— R(X(P)) (54)
Step 6)

whereA X (P) is constructed by multiplying X (P) by a sine
wave with a full period of six temperature profile functions in
the case of uncertainty of temperature profile to be used in the
humidity and ozone profile retrievals, and six humidity pro-
file functions in the case of water vapor uncertainty to be used
in the temperature and ozone profile retrievals. In the case of
ozone profile, with only seven functions, we simply multiply
the predicted uncertainty by 0.5. We have also found that in con-

structing the noise covariance terms in (4), it is advantageous tCStep 7)

setAX = 0.56(X) for all profile terms. For surface parame-
ters we takeA X = 9.X, as for the liquid water profile.

Steps in the Processing System
The processing system used in this paper is comprised of a

number of sequential steps listed below. All steps start from the

conditions found in the previous step, with appropriate com- Step 9)
puted uncertainty estimatés(® unless otherwise noted.

Step 1)

Step 2)

Step 3)

Step 8)

Produce an improved temperature profile and
microwave spectral emissivity starting from the
surface and atmospheric parameters determined in
step 3) using the AMSU-A channel radiances and
AIRS channel radiances which do not see clouds.
The surface skin temperature is not updated as
it is estimated better from AIRS radiances than
can be determined from AMSU radiances. This is
followed by an improved water vapor profile using
HSB radiances.

Determing? taking advantage of the refined pa-
rameters. Also determine cloud parameters to de-
cide which channels do not see clouds so as to av-
erage radiances in these channels when producing
R2. R? is considerably more accurate th&h be-
cause the surface and atmospheric parameters ob-
tained from the AIRS regression step are more ac-
curate than those from the microwave first product,
especially the infra-red surface spectral properties
which are not determined from the microwave re-
trieval.

Perform a surface parameter retrieval using AIRS
surface sounding channels shown in Fig. 1, and
AMSU-A and HSB window channels. This pro-
duces a new skin temperature, IR and microwave
spectral emissivity, and IR spectral bidirectional in-
flectance. It also includes adjustment of the entire
water vapor profile by a single trapezoidal func-
tion which is constant in the troposphere and lower
stratosphere.

Determine? taking advantages of the refined sur-
face parameters, and produggand new estimates
of cloud parameters.

Usef%? to sequentially determine surface pa-
rameters, temperature profile, humidity profile,
and ozone profile. These are called the first pass
retrieved products.

Update temperature profile. See Step 8).

Step 10) Update humidity profile. See Step 8).

Use as a starting pointthe microwave productwhichStep 11) Update ozone profile. See Step 8).
agrees with the AMSU-A, HSB radiances [20]. We Step 12) Update the temperature profile, using only

follow this by a temperature profile retrieval using
AMSU-A radiances as well as AIRS radiances
for channels that never see clouds, followed by a
water vapor retrieval using HSB channels and some

AMSU-A radiances and AIRS channel radi-

ances insensitive to clouds. This profile is also
used in the rejection criteria and is referred to as
the test microwave only retrieval.

AMSU-Awindow channels. As part ofthetempera- Step 13) Using the first pass retrieved products and updated

ture profile retrieval, we also update the surface skin
temperature and microwave spectral emissivity.
Determine an initil' from (11) using the atmo-

temperature profile, determing, final cloud pa-
rameters, and the final clear column radiant&és
which is a product of the system.

spheric and surface parameters obtained in Step 1) Step 14) Repeat Steps 8) and 9) usﬁfgto obtain the final

We also perform a cloud parameter retrieval to help
determine which IR channels are not affected by
clouds.R! is obtained using" in (10).

Determine the first guess IR surface parameters
and temperature—moisture—ozone profile us‘fijg
basedonaregressionstep using mostAIRS channels
[11]. Under some difficult cloud conditions, this
firstguess is modified in a manner described later.

product surface parameters and temperature pro-
file. The initial guess used in the second pass sur-
face parameter and temperature profile retrievals is
identical to that of the first pass but all other pa-

rameters are updated, such as the clear column ra-
diances, moisture profile, etc. The noise covariance
matrix is also updated to account for better esti-

mates of the other parameters. In addition, chan-
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nels in the water vapor band which are highly sensiwhere Forr, the clear-sky OLR, is the sum of contributions
tive to lower tropospheric water vapor are includefrom 14 spectral bands each with effective surface emissivity
in the final temperature profile step (but not the;

first pass) because an accurate moisture profile has

now been retrieved. The moisture profile and ozon&; z

profile retrieval steps are not repeated, as no ap- 14 P dr
preciable improvement in parameters resulted from = ”Z e; By, (Ts)Ti(Ps) + / B,. (1) 7 LPdKnP
further retrieval steps. i=1 P "

Step 15) Test solution for acceptance. If rejected, return to
the AMSU/HSB retrieval starting from the initial =7 > Fiowr (57)

guess, including AIRS channels insensitive to

clouds, as the *final microwave only prOdUCt'and the band transmittanceg P) are computed at effective
Cloud parameters for rejected cases are based on . .
this solution and were determined in Step 2) zenith angle$;. The small term related to downwelling thermal
) : n Slep 2). radiation reflected off the surface and transmitted to space is ne-
Step 16) Determine (outgoing longwave radiation) OLR an . . :
ected.Forp(P.) is computed in an analogous way, in terms

c!ear-sky OLR usmg'the appropriate solution foof the cloud spectral emissivity;(P.), and assuming a cloud
either accepted or rejected cases. o
transmissivity of(1 — ;(P.))

Adjustment of the First Guess ei(P.) By, (T(P.))r:(P.)
The first guess temperature profile (P) used in Step 4) 14 P dr
is usually the result of the AIRS regression done in Step 3)FcLp(P:) = WZ + B, (1) T LP dtnpP |- (58)
i=1 JnP, n

T*8(P). Under most conditions, this is considerably more ac-
curate than the microwave produ€t/(P) used in Step 1). +(1 —&)Fi cir

However, under some difficult cloud conditions, a very poor

regression can be obtained. In general, the regression temfére band transmittanceg( P) are parameterized as a function
ature profile will degrade below 300 mb with increasing valuesf temperature, moisture, and ozone profile [16]. The spectral
of the effective noise amplification factor, and can be considtoud emissivity was assumed to have a constant value of 0.9,
erably poorer than the microwave retrieval, especially near tteebe consistent with what was done in the cloud parameter re-
surface. The problem is compounded, in cases of large effégeval.

tive noise amplification factor, because temperature sounding

channels sensing the lower troposphere will be treated as ndr§jection Criteria

due to a large contribution of the second term in the noise co-A number of tests are done to assess the quality of the re-
variance matrix [see (20)]. Consequently, eigenfunctions havigigeval. If any of the tests fail, the full IR-microwave retrieval is
high vertical resolution in the lower troposphere will be heavilyejected. In such a case, the retrieval based on use of microwave
damped and the poor vertical structure in the lower tropospheiigd stratospheric AIRS channels Step 1) is reported, and appro-
of the regression guess will be heavily believed. To help allgriately flagged as such. Results shown later in the paper do not
viate this problem, we construct a first guess temperature piclude these rejected retrievals. The major cause of rejection is
file which is a linear combination of th&*&(P) andT*(P) difficulty in dealing with the effects of clouds on the AIRS ra-
below 300 mb diances. The tests are described below.

1) Assessment of Cloud Clearing FiEquations (11) and
(10) give the solution for the vectdr and the resultant clear
column radiance%?i. If a successful solution is produced, the
ensemble}?i for the cloud-clearing channelsshould match
whereA(P;) = 0if Aeg < 2.5 andA(P;) = 1if A.g > 6.5, the incoming estimates of clear column radiané?e,scLR toa
with values of A(P;) linearly interpolated between zero andeasonable degree. A poor match is indicative of either a par-
one for intermediate values af.¢. In addition,A(P) = 1 for ticularly poor first guess or problems in handling the effects
P < 300 mb, andA(P) is linearly interpolated in P for of clouds on the radiances. We compute the weighted residual
intermediate pressure values between 300 mb and the surfatcthe clear column radiances used in the computatiof iof

TO(P) = T"5(P) + A(P) (T (P) ~T"%(P)) (55

pressureP;. brightness temperature units
. R 2 1/2
Computation of OLR Z (Ri _ Ri,CLR) Ngl
OLR is computed from the AIRS products in a manner anal- AF =] 2 — (59)
ogous to that used to compute OLR from TOVS [15], [16] > Ny (W)R

F=(1-0a; —ay)Fcrr + a1 Foup(P.,) + az Forp(P.,)  and reject the solution i\ computed when generating
(56) is greater than 1.75 K. Equation (59) is equivalent to taking
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Averaoge Cloud Frection
of Coses 37.14%
t Cases Accepled 31.31%
t Essentiolly Cleor 0. 94%

Fig. 2. Number of cases as a function of cloud fraction (black), percentage of successful cases (mauve), and percentage of cases calleccasgbhitally cl

TABLE Il
NUMBER OF CASES AS AFUNCTION OF LATITUDE

Ocean Land
Essentially Essentially
Latitude All Accepted ~ Clear All Accepted Clear
80 — 90°N 216 165 0 38 32 0
70 — 80°N 307 217 0 176 86 0
60 — 70°N 151 90 1 295 68 1
50 — 60°N 118 84 4 247 65 0
40— 50°N 226 155 2 192 35 0
30 - 40°N 228 177 33 127 36 0
20 - 30°N 244 195 27 166 63 4
10 - 20°N 277 227 25 104 76 3
0- 10°N 319 195 13 91 73 3
0-10°S 333 205 61 76 34 0
10 - 20°S 298 224 24 112 60 0
20 — 308 315 242 45 97 52 7
30 - 40°S 418 343 20 26 13 0
40 - 50°S 396 295 15 27 2 0
50 - 60°S 446 314 16 0 0 0
60 - 70°S 347 241 5 101 46 4
70 — 80°S 123 76 9 411 297 81
80 - 90°S 0 0 0 152 121 28
TOTAL 4762 3445(72.3%)  300(6.3%) 2438 1159(47.5%) 131(5.4%)

the residual of clear column brightness temperatures weighte®) Large Residuals in Second Pass Retrievalsie general

by the channel noise covariance in brightness temperatiterative solution is terminated when either the residié&l

units. [(44)] is less than 10% of the RSS of the predicted noise for
2) Difficult Cloud Cases:Cases with extensive cloud covereach modeA By, [(38)] or R" is more than 75% of"~!.

and low contrast are particularly difficult. The solution is reSlow convergence may indicate a poor solution. We reject the

jected if the sum of the final retrieved cloud fractions for alkolution if the converged value @t is greater than the RSS of

cloud layers is greater than 80% or the total cloud fraction é5, in either the surface parameter retrieval or the temperature

greater than 50%, and the total cloud below 500 mb is greapeofile retrieval in the second pass. Poor convergence generally

than 10% and the noise amplification factor is greater than twiadicates problems with the clear column radianﬁ’és

or the noise amplification factor is greater than three, or the ef-4) Inconsistency of Test “Microwave Only” and Combined

fective noise amplification factor is greater than eight. We aldB/Microwave Retrievals:Under some conditions, the clear

reject cases if the total cloud liquid water determined by the ngelumn radiance%?f can be poor but all convergence tests are

crowave product is greater than 0.03 gmicm passed. Nevertheless, the test microwave only retrieval will
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Clear Column Brightness Temperature Error
Essentially Clear Cases (431/7200)
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Fig. 3. (Top) Mean value of cloud correction needed, cloud correction made, and errors of cloud-cleared brightness temperature for essectisdly. clea
(Bottom) RMS values of cloud correction needed, cloud correction made, and cloud-cleared brightness temperature errors for essentiatlySitegle spmt
noise is also shown.

produce low-level temperatures which differ significantly frondifferences between the temperature in the lowest 3 km of the
those of the second pass retrieval. This generally indicates ptest microwave only retrieval differs from that of the second
clear column radiances. The solution is rejected if the RM&ass retrieval by more than 1.25 K.
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Clear Column Brightness Temperature Error
All Accepted Cases (4604/7200)
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Fig. 4. (Top) Mean values of cloud correction needed, cloud correction made, and errors of cloud-cleared brightness temperatures for alsascéptetboz)
RMS values of cloud correction needed, cloud correction made, and cloud-cleared brightness temperature errors for all cases. Single sgotsiwseis al

IV. SIMULATION StuDY the operational general circulation model (GCM) from NOAA
NCEP for December 15, 2000 [13]. Details of the methodology
The simulation study is based on radiances computed from cém-simulate the surface and atmospheric conditions for each
ditions derived from a global simulation using a version of ~ AIRS footprint are given in [10].
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The test set is the first scan line of every granule (6-min p
riod) for December 15, 2000. The dependent dataset, on wh
the regression coefficients are based, is taken as cloud-free ri
ances computed from the whole day December 10, 2000. A fi
guess of all the geophysical parameters (including surface pr
sure) taken from an 18-hour GCM forecast is available for u:
in the retrieval. We used only the forecast surface pressure &
is felt that use of a model forecast first guess temperature—mc
ture profile is unnecessary to analyze AIRS/AMSU data becat
of the high information content of the radiances.

The AIRS orbital dataset has the following salient feature—
within a given scene made up of nine FOVSs: =

« variable surface topography and surface pressyre

» daytime and nighttime conditions;

* temperatureT’(P), moisture ¢(P), ozone O3(P), and
other trace constituents from the surface to 0.005 mb;
cloud liquid water profileg( P) (only affects microwave);
multiple-level cloud conditions within a FOV, with
spectrally varying cloud emissivity,.q(v), and reflec-
tivity, paa(v), consistent with atmospheric conditions
The cloud top pressure, emissivity, and reflectivity ar
spatially varying as well;

variable surface skin temperatuf,, spectral surface
emissivity e(v), and spectral surface bidirectional re:
flectancep(v);

variable land fraction, with coastlines, islands, lakes, etc
orbital simulation with simulated scan lines with variable
viewing angle and solar zenith angle.

V. RESULTsS 0.25: 0,67 0.86 .emmCleor Coses. Retries

There were a total of 7200 cases in the simulation. In 74
cases, the microwave retrieval step failed, and no retriefa§- 5 RMS temperature profile errors.
was attempted. Of the remainder, 4604 cases were accepted.
Fig. 2 shows the number of cases, and percent accepteddifference of the reconstructed clear column brightness tem-
a function of fractional cloud cover, in 0.5% bins. We alsperature(i)i and the nine spot average brightness temperature,
show statistics for cases we classify as “essentially clea®;, for all channels in the window regions between 800-¢m
based on the observed radiances. This “essentially clear” flaigd 900 cr!. For the scene to be declared “essentially clear,”
can be of use to the data assimilation community, in which BT must be less than or equal to 0.1 K. In addition, the re-
it is common to assimilate observed channel radiances unti&val must be accepted. 431 cases were called essentially clear.
clear conditions. The data assimilation community avoids clotfg. 2 includes the number of cases called “essentially clear”
contaminated radiances out of fear that noise due to handliga function of actual cloud cover. The average cloudiness of
effects of clouds on the radiances may degrade the resultalitcases was 37.14%, the average cloudiness of all accepted
analyzed fields. Two potential problems with this approaatases was 31.31%, and the average cloudiness of all cases called
are that only a small number of cases are completely cleassentially clear was 0.94%. The percentage of cases accepted
thus limiting the utility of the sounding data in improvementirops slowly with increasing cloud cover until about 50%, and
of forecast skill, and scenes with small amounts of cloutien drops off more rapidly after that. Roughly 40% of those
cover may be mistakenly classified as clear. Our “essentialigcepted cases with cloud cover less than 0.5% were identified
clear” flag is designed to include cases of very small amourds “essentially clear.”
of cloudiness to increase the yield of cases to be assimilatedrable 1l gives the distribution of the 7200 cases as a func-
as compared to only 100% clear situations. tion of latitude, with separate statistics for ocean and land. On

A case is a candidate to be called essentially clear if the largdts particular day, most of the essentially clear cases occurred
eigenvalue oA R’ N ' AR is less than 125 for ocean cases anith the tropics and southern (summer) hemisphere, with a sub-
225 for land cases. This indicates a small amount of variabilisfantial percentage (27.3%) occurring poleward dfS.0The
in the radiances in the 8 3 array of AIRS spots. A larger value percentage of cases accepted over land (47.5%) is considerably
of radiance variability is allowed for land cases to be callddwer than that over ocean (72.3%). A high percentage of re-
clear because surface variability is larger over land than ocetievals were rejected in large areas of very cold snow covered
We also define a cloud correction valdeBT as the average land in Canada and Siberia.
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Fig. 6. (Top) Mean temperature errors as a function of cloud cover for accepted retrievals. (Bottom) RMS temperature errors as a function of ¢wud cove
accepted retrievals.

Fig. 3 shows statistics for the clear column brightness tempérightness temperatures and the average observed values. Thisis
atures for the 431 essentially clear cases, with biases showthia correctiormadein the cloud clearing. The third panel shows
the upper and RMS values shown in the lower part of the figurne difference between the reconstructed clear column brightness
The top panel shows the difference between the noise-free brigistmperature and that computed from the truth. This isther
ness temperatures computed from the truth for a given scene anthe reconstructed clear column brightness temperature. Also
the average of the observed brightness temperatures inkt8 3shown in the third panel of the RMS statistics is the single spot
array of AIRS spots in the scene. This is the correatieededo  channel noise.
make the observed brightnesstemperatures matchthe true valuds.the mean sense, “essentially clear” spots needed an average
The second panel shows the difference between the reconstructedd correction of roughly 0.1 K in the 800-crh-1150-cnt!
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region, and essentially none was made on the average. 1
resulted in a small cold bias in this window region in the re
constructed clear column brightness temperatures. In the R
sense, corrections of up to 0.25 K were needed in the longwe
window for these cases (some of this is due to channel noi:
and corrections of about 0.1 K were made. For the most part, 1
RMS values of the reconstructed brightness temperatures w
comparable to, or smaller than, the single spot channel noi
Lower values can arise if either the channel is considered t
to see clouds (the noise amplification factor is 1/3) or the sce
is considered clear or contains very small values,atsulting
in noise amplification factors less than one, provided accur:
values ofy) are obtained. Radiances for “essentially clear” cas
are definitely suitable for data assimilation purposes.

Fig. 4 shows analogous statistics for the 4604 accepted ca
for all cloud conditions. On the average, cloud corrections of ¢
most 12 K were needed in the longwave window region, and t
correction made was slightly smaller than needed, with abc
a 0.5-K negative bias in reconstructed clear column brightne
temperatures at the worst frequencies.

In the RMS sense, reconstructed clear column brigh
ness temperatures were still comparable to channel nao
throughout most of the temperature profile sounding regio
(650 cnT!'-750 cnt! and 2200 cm!-2400 cnT!), but larger
than the noise elsewhere in the spectrum. RMS errors in i i P | i i
water vapor sounding region are still very small and radianc i -
in these channels, as well as those in the temperature sounc
region, should be suitable for data assimilation. We encoura : e
researchers in the field of data assimilation to test the u - 20 . =
of radiances for all accepted cases. This would substantic..., _
increase the number of cases which can be used and shc&uld7
further improve forecast skill compared to use of radiances i
just clear or essentially clear cases.

Fig. 5 shows RMS temperature errors for the 4604 acceptewor in the lowest 1 km (1.06 K) slightly exceeds 1 K, however.
cases, as well as for the 431 essentially clear cases. ErrorsSkim temperature errors are 0.25 K for clear cases and 0.59 K
shown for layer mean temperatures in roughly 1-km layers frofar all cases. These include land cases and are affected by un-
the surface to 300 mb, 3-km layers from 300-30 mb, and 5-keertainties in surface spectral emissivity.
layers from 30—-1 mb. Results are shown for both the regressiorfig. 6 shows mean and RMS errors of retrieved surface skin
guess and the final physical retrieval. Errors of the surface skemperature and temperatures in 1-km tropospheric layers up
temperature are indicated in the figure, as well as average RKtS344 mb for accepted retrievals as a function of actual cloud
temperature profile errors over the layers 700 mb to the surfamgver. Also shown is the mean and RMS clear column brightness
and 100 mb to the surface. The physical retrieval improves cdemperature error for the 937.8-cthwindow channel. Mean
siderably over the regression based retrieval in both clear aamti RMS errors for most temperatures are not very sensitive to
cloudy cases with the largest improvement near the surface claud fraction. Negative biases are found, which increase slowly
cloudy cases, part of this improvement is due to use of more awith increasing cloud cover, for the longwave window channel
curate clear column radiances as the final physical retrieval usadiance, the surface skin temperature, and the temperature in
n* while the regression uss. In addition, the regression coef-the lowest kilometers of the atmosphere. RMS errors of all pa-
ficients are based on radiances for clear cases, in which chamagheters increase slowly with increasing cloud cover, especially
noise is uncorrelated and lower than for cloud-cleared radiancks.the lowest kilometers of the atmosphere.

These are not factors in clear cases however, which still showFig. 7 shows RMS percent errors of the water vapor retrievals,
significant improvement in RMS errors of the physical retrievaleighted by water vapor amount in the layer, for integrated
compared to regression near the surface. Retrievals under¢hkimn water vapor in roughly 1-km layers from the surface to
multi layer cloud cover used in this simulation (average cloud200 mb. The RMS percent errors of total precipitable water are
ness of the accepted cases is 31%) degrade over those in sy indicated in the figure. Clouds do not degrade the retrieval
situations beneath 150 mb, but are still of high accuracy. Aprofile accuracy appreciably. Part of this result may be due to
erage tropospheric RMS errors are 0.82 K, and average lowampling differences between clear and cloudy areas.
tropospheric errors are 0.92 K, both exceeding or essentiallyClouds degrade the total precipitable water accuracy by 2.5%,
meeting the 1-K RMS error requirement for AIRS. The RM®ut the 3.8% error of total precipitable water for all cases is still

. RMS humidity profile percentage errors.
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TABLE IV
RETRIEVED CLOUD FRACTION AND OLR ERRORS

Accepted Cases Rejected Cases

Number 4604 2522
Average Cloud Cover 31.31% 47.12%
Bias 1.98% -1.17%
RMS Error 6.33% 11.75%
Average OLR 221.8 W/m®  196.2 W/m’
Bias -1.28 Wim®  0.38 W/m®
RMS Error 2.94 W/m® 5.20 W/m®
Average CLROLR 2530 W/m® 238.8 W/m’
Bias -1.60 W/m®*  -1.81 W/m®
RMS Error 257TWm'  6.76 W/m’

Two straightforward parameters to compare are total cloud frac-
tion oy +a9, and OLR. The OLR validates the cloud parameters,

as well as all other parameters, in a radiative sense. Clear-sky
OLR (Fcrr) is also useful to validate all parameters with the
exception of clouds. Accuracies should be better for accepted
cases than for rejected cases, because cloud products and all
other parameters for rejected cases are based on the AMSU re-
trievals which are less accurate.

Table IV shows statistics for retrieved cloud cover, OLR and
clear-sky OLR for accepted and rejected cases. The errors for
rejected retrievals are poorer than for accepted retrievals, but all
products should be useful for climate studies.

The OLR product is complementary to OLR measured more
directly from CERES, also on the Aqua platform, in that the
AIRS derived product will explain variations of OLR and
clear-sky OLR in space and time in terms of variations of
surface and atmospheric parameters, including cloud cover and

Fig. 8. Ozone profile retrieval errors.

(1]
extremely good. The 1-km layer precipitable water errors in the
troposphere are generally better than 20% in the cloudy caseg]
in layers up to about 235 mb. Clear cases RMS percentage er-
rors are worse than all case errors in the mid-upper troposphere.
However, the actual RMS errors are larger in the cloudy cases|3]
which are considerably moister in the mid-upper troposphere[4]
than are the clear cases.

Fig. 8 shows weighted percent errors in the ozone profile re-[5]
trievals in roughly 4-km layers from 260—2.15 mb and in one
coarse layer from 260 mb to the surface. Also shown is the per4g)
centage error in total ozone, which is 2.4% for clear cases and
2.6% for cloudy cases. The RMS profile errors are better than7
8% in all layers in both clear and cloudy cases. The physical re-
trieval improves tropospheric ozone retrievals considerably over
what is obtained by regression. 8

The accuracy of cloud parameters cannot be compared in a
straightforward manner because of the existence of two cloud®!
layers in some (most) scenes. The retrieved cloud fractions are
effective, both because of errors in retrieved cloud top pressuieo]
and assumed cloud spectral emissivity. In the retrieval process,
cloud spectral emissivity was always assumed to be 0.9 while
the true cloud spectral emissivity varied a few percent from that.

s L height.
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