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ative to input datasets, averaged over the domain of the study13
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Abstract14

We present a near surface air temperature (NSAT) fused data product over the contigu-15

ous United States using data from the Atmospheric Infrared Sounder (AIRS), on the16

Aqua platform, and the Cross-track Infrared Microwave Sounding Suite (CrIMSS),17

on the Suomi National Polar-orbiting Partnership (NPP) platform. We create the18

fused product using a fast python implementation of Spatial Statistical Data Fusion19

(SSDF) along with weather station data from NOAA’s Integrated Surface Database20

(ISD) which is used to estimate bias and variance in the input satellite datasets. Our21

fused NSAT product is produced twice-daily (one daytime and one nighttime estimate22

per day) and on a 0.25-degree latitude-longitude grid. We provide detailed validation23

using withheld ISD data and ERA5-Land reanalysis. The fused gridded product has24

no missing data; has improved accuracy and precision relative to the input satellite25

datasets, and comparable accuracy and precision to ERA5-Land; and includes accurate26

uncertainty estimates. Over the domain of our study, the fused product decreases day-27

time bias magnitude by 1.7 K and 0.5 K, nighttime bias magnitude by 1.5 K and 0.2 K,28

and overall RMSE by 35% and 15% relative to the AIRS and CrIMSS input datasets,29

respectively. Our method is computationally fast and generalizable, capable of data30

fusion from any number of datasets estimating the same quantity. Finally, because31

our product removes bias, it produces long-term datasets across multi-instrument re-32

mote sensing records with improved stationarity for climate trend analysis, even as33

individual missions and their data records begin and end.34

1 Introduction35

From the point of view of scientific analysis, satellite remote sensing datasets36

present several challenges. Many satellite remote sensing datasets are released as37

“Level 2” (L2) products, geophysical quantities retrieved from directly observed radi-38

ances. Instantaneous snapshots are obtained at a great number of spatial and temporal39

fields of regard, and data coverage can be spatially incomplete due to gores (spaces40

between orbit tracks determined by orbital and sensor geometry), clouds, downlink41

limitations, or other issues. Satellite retrievals suffer from uncertainties and errors due42

to information and algorithm limitations, while uncertainty estimates, if reported at43

all, are not always reliable. Drifts of orbits and spectral channels, and even sudden44

changes, make the use of data records from satellites challenging in climate studies45

by causing bias nonstationarity that must be separated from real signals. While L246

satellite data brings invaluable information to scientific analysis, using it appropriately47

requires significant expertise and involves serious limitations.48

Data fusion is the combining of multiple datasets into a single dataset with better49

properties than any of the individual input datasets (for a recent review, see Ghamisi et50

al. (2019)). Here, we demonstrate a data fusion method, called Spatial Statistical Data51

Fusion (SSDF) that addresses each of the above issues (Nguyen et al., 2012, 2014). We52

use SSDF to create a fused near-surface air temperature (NSAT) product. NSAT is a53

critical remote sensing product for climate studies of extreme heat, as well as for many54

science applications areas of great importance to society such as health, agriculture,55

urban planning, hydrology and water management, ecology and conservation, and fire56

management. Our SSDF NSAT product combines two remote sensing data products:57

L2 NSAT from the Atmospheric Infrared Sounder (AIRS) on the Aqua platform, and58

L2 NSAT from the Cross-track Infrared Microwave Sounding Suite (CrIMSS) on the59

Suomi National Polar-orbiting Partnership (NPP) platform, which are furthermore60

created using two independent retrieval algorithms. We also use information content61

from in situ weather station networks (NOAA’s Integrated Surface Database, or ISD)62

to determine uncertainties in the two remote sensing datasets which are needed to63

perform fusion. The fused NSAT product is produced on a twice-daily basis (one64
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daytime and one nighttime estimate per day), and covers the contiguous United States65

(CONUS) and adjacent parts of North America.66

Our fused SSDF NSAT product has the following key advantages over either of67

the input remote sensing datasets:68

1. SSDF fills spatial gaps (e.g., due to orbital gores or clouds);69

2. SSDF produces estimates on a regular 0.25-degree spatial grid;70

3. SSDF reduces bias and variance;71

4. SSDF produces uncertainty estimates that characterize the actual error with72

more skill than the input datasets;73

5. SSDF improves long-term bias stationarity relative to the input datasets, facil-74

itating creation of climate records over changing instrument epochs.75

The rest of the paper is organized as follows. We first describe the input datasets76

and methodology. Then we present the SSDF NSAT product, and the results of77

validation against withheld ISD surface station data. We also compare the SSDF fused78

NSAT product to the individual input remote sensing datasets, and to ERA5-Land79

reanalysis. In the process of validating our SSDF product, we also produce the most80

thorough validation study to date of the AIRS V7 and CrIMSS-CLIMCAPS V2 NSAT81

products over CONUS. We conclude with a discussion of advantages, limitations, and82

potential future work.83

2 Data and methods84

Performing and evaluating SSDF involves five major steps: (1) Obtaining and85

filtering input remote sensing datasets that estimate the same quantity; (2) Matching86

the remote sensing datasets to a reference in situ dataset in space and time; (3) Using87

these matched data (“matchups”) to characterize the input datasets via estimation of88

their bias and variance relative to the reference estimate; (4) Performing the SSDF89

calculations; and (5) Validating the results using withheld data from the reference90

estimate. The method and the specific datasets used in our NSAT dataset are described91

in the following subsections.92

2.1 Satellite NSAT data93

The input satellite datasets come from two generations of hyperspectral infrared94

sounders and retrieval algorithms. The Aqua platform that carries AIRS launched95

in 2002 in a sun-synchronous polar orbit, with equator crossing times of 1:30 P.M.96

and 1:30 A.M. for ascending (south to north) and descending (north to south) nodes,97

respectively. AIRS is an infrared grating spectrometer with 2378 channels, spanning98

3.7 to 15.4 µm (Chahine et al., 2006). Power to critical channels of the Aqua satellite’s99

Advanced Microwave Sounding Unit (AMSU)-A2 was lost in September 2016 (Yue100

et al., 2017), which was used to complement the AIRS instrument in atmospheric101

temperature and moisture profile retrievals.102

We use the AIRS version 7 L2 “infrared-only” temperature retrieval algorithm103

(Susskind et al., 2014). This retrieval uses the Stochastic Cloud Clearing Neural Net-104

work (SCCNN) which is trained to ECMWF fields (Blackwell, 2005) as a first guess,105

then refines to a final estimate. It also uses information from the satellite’s other mi-106

crowave sounder, AMSU-A1 (Yue et al., 2020). The retrieval uncertainty is estimated107

via a regression model using eleven retrieval diagnostic quantities as predictors; the re-108

gression coefficients are trained on two days of retrievals (9/29/04 and 2/24/07) using109

ECMWF 3-hour forecasts as a reference dataset (Susskind et al., 2014; Thrastarson et110

al., 2020). Each individual retrieval has a nominal horizontal resolution of 45 km, and111
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each swath contains 30 retrievals across its width and 45 along track. The product is112

organized nominally in 240 “orbital granules” per day (AIRS Project, 2020).113

The Cross-track Infrared Sounder (CrIS) and the Advanced Technology Mi-114

crowave Sounder (ATMS) instruments launched onboard the NPP platform in 2012.115

NPP is in the same orbital plane as Aqua, but at a higher altitude (824 km as opposed116

to 705 km), with equator crossing times also nominally of 1:30 P.M. and 1:30 A.M.117

for ascending and descending nodes, respectively. We use the Community Long-term118

Infrared Microwave Coupled Atmospheric Product System (CLIMCAPS) Version 2119

L2 temperature retrieval, which uses an optimal estimation methodology with a first120

guess from the Modern-Era Retrospective Analysis for Research and Applications ver-121

sion 2 (MERRA2) (N. Smith & Barnet, 2020), and information from both instruments.122

CLIMCAPS uncertainty is estimated and propagated sequentially via error covariance123

matrices in stages (N. Smith & Barnet, 2019). CLIMCAPS produces a combined124

infrared and microwave retrieval at two spectral resolutions: Nominal Spectral Res-125

olution (NSR) and Full Spectral Resolution (FSR). We use the CLIMCAPS-SNPP126

NSR product to create our SSDF product. In what follows, we refer to this product127

as “CrIMSS-CLIMCAPS” or simply “CrIMSS.”128

For both instruments, NSAT is obtained from the vertically-resolved temperature129

profile (100 pressure levels) by interpolation or extrapolation with pressure to the130

surface pressure for each field of regard (Olsen et al., 2017). The profile temperatures131

immediately above and below the surface are used for the interpolation, unless the132

level above is within 5 hPa of the surface pressure. In that case, the two levels above133

the surface are used. We ingest only L2 NSAT retrievals from AIRS V7 IR-only and134

CrIMSS-CLIMCAPS products with data quality flags ‘good’ or ‘best’ in our data135

fusion procedure.136

2.2 In situ NSAT data137

The National Oceanic and Atmosphere Administration (NOAA) Integrated Sur-138

face Database (ISD) is a global database of near-surface meteorological observations139

compiled from over a hundred sources (A. Smith et al., 2011). The record extends back140

to the 1950s, although new stations have been added on a continual basis as available,141

improving coverage over time. Today ISD consists of more than 35,000 surface weather142

stations globally, 14,000 of which remain active. Figure 1 shows the spatial coverage143

of ISD stations in North America.144

We use sub-hourly 2 m NSAT measurements gathered from over 7000 stations in145

North America as our reference dataset, for bias and variance estimation and for val-146

idation. Naturally ventilated screened surface station air temperature measurements147

are accurate to ±0.1°C in most circumstances(Harrison & Burt, 2021). ISD data come148

with a set of ten data quality flags, indicating various problems and levels of quality.149

We only use ISD data flagged as highest quality, i.e., data must be flagged with either150

1 (‘Passed all quality control checks’) or 5 (‘Passed all quality control checks, data151

originate from an NCEI data source’).152

2.3 Reanalysis153

We also compare the SSDF NSAT results to European Centre for Medium-Range154

Weather Forecasts (ECMWF) Reanalysis 5 (ERA5)-Land reanalysis data. The ERA5155

is the fifth-generation global atmospheric reanalysis from ECMWF, replacing the ERA-156

Interim reanalysis which stopped being produced on August 31st, 2019. In addition,157

newly reprocessed datasets along with recent instruments have been assimilated into158

the ERA5 that could not be ingested into the ERA-Interim (Hennermann & Berris-159

ford, 2019). We note that some AIRS spectral channels under clear conditions are160
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Figure 1: Spatial coverage of the ISD stations over North America.

incorporated into ECMWF reanalysis (Mcnally et al., 2006), but that ISD data are161

not.162

We use hourly ERA5-Land output which is a high-resolution version (∼9 km)163

of the land component of the ERA5 climate reanalysis. ERA5-Land was chosen over164

the full ERA5 reanalysis for its finer spatial resolution of 0.1x0.1°. Hourly 2 m air165

temperature output was selected for our comparison.166

2.4 Bias and variance estimation167

Biases and variances of input data sources are crucial for proper data fusion. The168

SSDF methodology assumes input data are unbiased, and weights them by the inverse169

of their respective variances. This minimizes output errors of the fused estimates.170

Therefore, data are bias-corrected before SSDF ingestion, and the quality of the final171

fused product is largely determined by the quality of uncertainty estimates for the172

inputs.173

To estimate bias and variance for satellite footprints, we create an ensemble174

of “matchups”: matched pairs of satellite and ISD station estimates that are close in175

space and time. For a given period, the matchups are sorted into 240 km (∼two-degree)176

diameter hexagonal spatial bins based on satellite footprint location, with three-day177

time bins (day of interest, along with preceding and following days). This binning178

is the basis for quantifying bias and variance for all satellite footprints in a given179

space-time cell. We experimented with using longer and shorter time bins to explore180

the trade off between sample size and capturing rapid changes in conditions affecting181

retrieval bias, and found that the three-day bin delivered the lowest average biases and182

variances over CONUS. Before starting, we randomly selected 1% of the ISD matchups183

to withhold for validation. We chose a relatively small amount to withhold in order to184

maximize the information content for the SSDF product. In this subsection, the term185

“ISD” refers to the non-withheld ISD data.186

To obtain the matchups we apply the following steps.187
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1. Given an ISD observation at location s and time tI(s), select the AIRS granule188

(1 of 240) with the closest time to tI(s).189

2. Within this granule, select all L2 retrievals within 100 km of s and 1 hour of190

tI(s).191

3. If Step 2 results in more than 1 retrieval, select the one closest in spatial distance.192

Note that the Steps in 1-3 will result in a one-to-one match between an ISD193

observation and a single AIRS footprint. Some ISD observations may have no corre-194

sponding AIRS match, in which case we return a null result. We next tessellate a fixed195

hexagonal spatial grid over CONUS and find the biases and variances using matchups196

aggregated over 3 days within each grid cell. That is,197

I. To compute a bias on day d and mode j (day or night) and in hexagonal grid198

cell i, we find the set of all valid (i.e., non-null) AIRS-ISD matchups from Steps199

1-3 above such that,200

(a) the AIRS data come from mode j,201

(b) the AIRS footprint belongs within the grid cell i,202

(c) the ISD date is in (d− 1, d, d+ 1).203

II. The bias and variance for day d, mode j, and grid cell i are then computed204

using the set of paired ISD-AIRS matchups.205

Bias and variance estimation for CrIMSS follows the same procedure. For bias206

correction, given an instrument observation at location s on day d and mode j, we207

compute the corresponding bias within the grid cell which contains s for day d and208

mode j, and we subtract it from the instrument’s NSAT value. For more detail on the209

bias and variance estimation process, please refer to the Appendix.210

2.5 Data fusion methodology211

In this section we review the framework of Spatial Statistical Data Fusion (SSDF;212

Nguyen et al., 2012) on two satellite NSAT datasets. Remote sensing data in general213

are heterogeneous. By this we mean that they may have different footprints, mea-214

surement error characteristics, and sampling patterns. We account for this by using a215

spatial statistical model that captures the spatial dependence between the true quan-216

tity of interest at a particular location and the observations from all data sources. In217

particular, the issue of different footprint sizes and shapes is known as a change-of-218

support problem (e.g. Gotway & Young, 2002), and we will address this using SSDF219

as described in Nguyen et al. (2012).220

Consider a discretized domain where {Y (s) : s ∈ D} is a hidden, real-valued221

spatial observable. The domain of interest is ∪{Ai ⊂ <d : i = 1, . . . , ND}, which is222

made up of ND fine-scale, non-overlapping, areal regions {Ai} with locations D ≡223

{pi ∈ Ai : i = 1, . . . , ND}. Nguyen et al. (2012) call these fine-scale regions Basic224

Areal Units (BAUs), and they represent the smallest resolution at which we will make225

estimates with the model.226

For a given day and mode (d and j using the notation of the previous subsection),227

denote the vector of NSAT data at all locations by Zk, where k = 1 for AIRS and228

k = 2 for CrIMSS:229

Zk = (Zk(Bk1), Zk(Bk2), . . . , Zk(BkNk
))′,

where Zk is Nk-dimensional, Bkq is the q-th footprint from the k-th dataset and is
made up of BAUs with locations indexed by D ∩Bkq. We assume that data observed
at an arbitrary areal region B follow the “data model” in which the true observable is
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averaged over the areal region plus an independent error term. That is,

Zk(B) =
1

|D ∩B|

{ ∑
s∈D∩B

Y (s)

}
+ εk(B); B ⊂ <d. (1)

where Y (·) is a geophysical observable (here, NSAT) that is common to both datasets,230

and εk(·) is an independent but non-identically distributed Gaussian random variable.231

That is, we assume that the q-th error in the k-th dataset is distributed as εkq ∼232

N(bkq , v
k
q ). In general, bkq is not zero, however, in our case bkq is assumed to be zero233

because we performed bias correction as described in the previous subsection, and234

vkq are calculated from the hexagonal-cell-specific mean and variance estimates (see235

Appendix for details).236

Our fused estimate for a region centered at location B0 is a linear combination237

of Z1 and Z2. That is,238

Ŷ (B0) = a′1Z1 + a′2Z2, (2)

where a1 and a2 are N1 and N2 dimensional vectors, respectively. These vectors are239

unknown and are estimated in a way that minimizes the expected squared error relative240

to the true observable. That is, we choose a1 and a2 to minimize,241

E((Y (B0)− Ŷ (B0))2) = Var(Y (B0)− a′1Z1 − a′2Z2)

= Var(Y (B0))− 2a′1Cov(Z1, Y (B0))

−2a′2Cov(Z2, Y (B0))

−2a′1Cov(Z1,Z2)a2

+a′1Var(Z1)a1 + a′2Var(a2)a2

subject to the unbiasedness constraint that the elements of a1 and a2 add up to 1.242

That is,243

1 = a′11N1
+ a′21N2

, (3)

where 1Nk
is an Nk-dimensional vector of ones. The solution to the minimization244

problem in (3) can be found via the method of Lagrange multipliers; but it requires245

knowledge of the spatial covariance structure C(Bi, Bj), which can be expanded in246

terms of the BAU covariances:247

C(Bi, Bj) =
1

|D ∩Bi||D ∩Bj |
∑

u∈D∩Bi

∑
v∈D∩Bj

C(u,v). (4)

Typically, the covariance structure in kriging-based approaches is estimated from
the data, but the formulation in Equation 4 makes estimation intractable for non-linear
covariance classes. We make use of the Spatial Mixed Effects model (SME; Cressie
& Johannesson, 2008), which assumes that the true observable, here NSAT, can be
written as the linear mixed model,

Y (s) = t(s)′α + S(s)′η + ξ(s). (5)

where t(·) ≡ (t1(·), . . . , tp(·))′ is a vector of p known covariates, such as geographical248

coordinates or other physical variables. The vector of linear coefficients, α, is unknown249

and will be estimated from the data. The middle term captures the spatial dependence250

as the product of an r-dimensional vector of known spatial basis functions, S(s), and an251

r-dimensional Gaussian random variable, η. Here, we assume that with η ∼ N(0,K).252

Similar to the implementation in Nguyen et al. (2012), we implement these using253

multi-resolution bisquare basis functions centered at different resolutions of the Inverse254

Snyder Equal-Area Projection Aperture 3 Hexagon (ISEA3H) type within the Discrete255
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Global Grid (DGGRID) software (specifically, resolutions 2, 3, and 5 of ISEA3H, for256

details see Sahr, 2019). The last term, ξ(·), describes the BAU-scale variability of the257

process. We assume that ξ(·) is an independent Gaussian process with mean zero and258

variance σ2
ξ .259

The SME model in Equation 5 has useful change-of-support properties, which260

makes computation of the spatial covariance function straightforward. In particular,261

Nguyen et al. (2012) shows that262

cov(Z(Bi), Z(Bj)) = S(Bi)
′KS(Bj) + σ2

ξ

|D ∩Bi ∩Bj |
|D ∩Bi||D ∩Bj |

+ vki I(i = j), (6)

where

S(Bi) ≡
1

|D ∩Bi|
∑

u∈D∩Bi

S(u).

Notice that Equation 6 allows us to express the covariance between spatial averages263

explicitly in terms of the spatial dependence parameter K. This allows for straightfor-264

ward estimation of it from footprint data.265

Another advantage of the SME model is its scalability. For a general covariance266

structure, solving for a1 and a2 requires inverting a (N1 +N2)× (N1 +N2) covariance267

matrix, which has computational complexity O((N1+N2)3). For large datasets such as268

AIRS and CrIMSS where the data size is on the order of tens of thousands, this matrix269

inversion is computationally infeasible. However, the model in Equation 5 implies the270

following full covariance matrix:271

Σ ≡ var((Z1′,Z2′)′)

= S′KS + U,

where S is a matrix constructed by appending the spatial function S(·) over all the272

footprints in both datasets, U is the sparse covariance matrix for the fine-scale pro-273

cesses ξ(·), and the measurement-error processes εk(·) at the given data locations (for274

more details, see Equation 4 of Nguyen et al., 2012). Using the Sherman-Morrison-275

Woodbury formula (e.g., Henderson & Searle, 1981), the matrix inverse is given by,276

Σ−1 = U−1 −U−1S′
(
K−1 + SU−1S′.

)−1
SU−1,

Note that the inversion above, and hence the calculation of the coefficients a1 and277

a2 for the fused estimate, is very fast because it only requires inversion of the sparse278

(N1 + N2) × (N1 + N2) matrix U, which is typically very sparse, and inversion of K279

and (K−1 + S′U−1S), both of which are r × r matrices (r << N1 +N2).280

The methodology described in this section is a scalable variant of Gaussian pro-281

cess prediction (Cressie, 2015). It has been applied to fusion of total column CO2282

concentration (XCO2) from AIRS and OCO-2 and aerosol optical depth from MISR283

and MODIS (Nguyen et al., 2012, 2014). Hammerling et al. (2012) used another284

variant called local kriging to produce Level 3 estimates of XCO2 from the GOSAT285

instrument.286

There are two important advantages of Gaussian process prediction over other287

approaches currently in use such as binning or nearest neighbor interpolation. First,288

our fused estimates are best linear unbiased estimates. That is, the standard errors are289

guaranteed to be the smallest possible because the estimates are derived through an290

algorithm that minimizes errors relative to the unknown true process. Such estimates291

are called best linear unbiased estimates, and are optimal in that sense. It is easily292

shown that within the class of linear estimators, this method produces the smallest293

prediction errors. The second advantage is that SSDF provides a statistically princi-294

pled method for estimating uncertainties (that is, Var(Ŷ (B0)− Y (B0))). Quantifying295

and minimizing uncertainties in this manner is crucial for creating data products for296

scientific analyses that involve making inferences about geophysical observables.297

–8–

ESSOAr | https://doi.org/10.1002/essoar.10510524.1 | CC_BY_NC_ND_4.0 | First posted online: Tue, 15 Feb 2022 08:19:21 | This content has not been peer reviewed. 



manuscript submitted to Earth and Space Science

2.6 Dataset preparation for validation298

We validate our SSDF product using a randomly chosen reserved 1% of the ISD299

dataset. We match up SSDF, AIRS, CrIMSS, and ERA5 estimates to withheld ISD300

data using a 100 km and 1 hour matchup criterion (see Section 2.4 for more detail).301

This matchup procedure generates multiple paired datasets: ISD-AIRS, ISD-CrIMSS,302

ISD-SSDF, and ISD-ERA5. These matchup datasets might differ in their coverage;303

for instance, an SSDF estimate might be matched to an ISD observation at a location304

where there are no nearby AIRS or CrIMSS estimates. Therefore, to mitigate the effect305

of biases due to differing spatial and temporal coverage in these matchup pairs, we also306

require that SSDF estimates are also close to (within the same matchup distance and307

time) at least one datum from the comparison dataset. This allows us to compare, for308

example, AIRS and SSDF(AIRS) datasets which have the same number of samples,309

all of which are collocated in space and time within the matchup criterion.310

The choices of a 1% test ISD dataset and this matchup scheme results in over311

4000 AIRS-SSDF sample pairs and over 13,000 CrIMSS-SSDF sample pairs for 2013,312

a typical year.313

3 Results314

3.1 SSDF product overview315

We produced fused NSAT using two satellite input datasets over North America316

between 25 N and 50 N, from November 28 2012, when CrIMSS-CLIMCAPS first317

becomes available, through the end of 2020. During this time period, there were 34318

days and 36 nights with no AIRS data (approximately half of which occurred in 2020),319

and 24 days and 28 nights with no CrIMSS-CLIMCAPS data. In the cases with only320

one input satellite dataset, the SSDF product is created from only the single dataset,321

thus creating a continuous record. There was one day/night period (November 7, 2020)322

without either AIRS or CrIMSS-CLIMCAPS data; we did not create SSDF product323

for this day.324

Figure 2: Sample data fusion satellite NSAT inputs, SSDF NSAT results, and uncer-
tainty estimates for 2015 October 31, day. The top two plots show maps of the input
satellite NSAT data ingested into the SSDF product, with AIRS on the left and CrIMSS
on the right. The bottom-left plot shows the SSDF fusion results. The bottom-right plot
shows the uncertainty estimates on the SSDF fusion results at the 1-sigma level. All units
are Kelvin.
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Figure 3: Same as Figure 2 but for night. All units are degrees K.

Figures 2 and 3 provide maps representing one arbitrarily chosen day and night325

of the SSDF product. For both the day and night cases, the top two plots show maps326

of the input satellite data ingested into the SSDF product, with AIRS on the left and327

CrIMSS on the right; the bottom left plot shows the SSDF fusion results; and the328

bottom right plot shows the uncertainty estimates on the SSDF fusion results at the329

1-sigma level. These sample maps demonstrate how our SSDF method fills in missing330

data in the input datasets by exploiting spatial correlations to provide a complete331

gap-filled, gridded product. They also provide a first look at the SSDF uncertainty332

estimates. Note that the estimated uncertainties are higher in regions that contain no333

observations, contain observations from only a single input dataset, or in which the334

two input datasets have relatively poor agreement.335

3.2 Bias, standard deviation, and RMSE comparison336

We now turn to validation against withheld ISD reference data to quantify im-337

provement in the SSDF products. We examine bias, standard deviation, and RMSE,338

calculated from the withheld matchups, of AIRS, CrIMSS, ERA5-Land, and the cor-339

responding matched SSDF data. In what follows, analyze daytime and nighttime340

separately, as daytime and nighttime biases differ significantly.341

We first show maps of bias, RMSE, and standard deviation relative to the 1% of342

withheld (testing-only) ISD reference data, based on the matchups aggregated into the343

hexagonal bins. Figure 4 shows maps of bias (retrieval - ISD) for AIRS, CrIMSS, and344

SSDF, for the 2013-2020 period in total, and for day-only and night-only. Individual345

bias estimates for retrieval-ISD pairs are aggregated into 2-degree hexagonal cells.346

Overall, in the mean over CONUS and over the entire time period, SSDF provides347

a reduction in the magnitude of daytime bias of 1.7 K and 0.5 K relative to AIRS and348

CrIMMS, respectively. At night, SSDF is essentially unbiased in the mean over the349

domain and provides a reduction in the magnitude of bias of 1.5 K and 0.2 K relative350

to AIRS and CrIMMS, respectively.351

AIRS shows a strong cold bias in daytime over the mountainous West, which352

is also present in CrIMSS, although less severe. AIRS shows a near-constant warm353

bias over the entire Eastern CONUS at night, while CrIMSS shows a sharp warm bias354

over small regions of the mountainous West at night. SSDF corrects all of these biases355

(through the bias-correction procedure described above) and produces estimates with356

lower biases than either of its input satellite data sets over the domain.357
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Figure 4: Maps of bias (retrieval - ISD) over the product period of 2013-2020, created
against the withheld ISD test data, for AIRS (first column), CrIMSS-CLIMCAPS (second
column) and SSDF (third column), for both day and night together (top row), for day
only (second row) and for night only (third row). Individual bias estimates for retrieval-
ISD matchup pairs are aggregated over 2-degree hexagonal cells. The mean bias over
CONUS for the entire time period is shown in the title for each map.
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Figures 5 and 6 show maps of standard deviation and RMSE for AIRS, CrIMSS358

and SSDF, for the 2013-2020 period, and for daytime only and nighttime only. Stan-359

dard deviation and RMSE tell a similar story to that of bias. Overall, in the mean360

over CONUS and over the entire time period, SSDF provides a reduction in RMSE of361

35% and 15% compared to AIRS and CrIMSS, respectively.362

CrIMSS has high RMSE over the mountainous West in both day and night,363

but low RMSE over the eastern two-thirds of the continent. Similarly, AIRS has364

relatively high RMSE over the entire domain, but especially over the mountainous365

West. Mountainous regions pose particular challenges for remote sensing of surface366

quantities, and of NSAT in particular, which can vary greatly depending on e.g., north-367

facing versus south-facing mountain surfaces. Furthermore, variations in topographic368

features between ISD stations and their matched remote sensing retrievals can lead369

to random errors, increasing RMSE and variance estimates. However, SSDF NSAT370

shows a clear decrease in bias over all regions, including in the mountainous western371

CONUS, although there is potential for improvement in the SSDF product over the372

West.373

Figure 5: Standard deviation maps. The nine panels are similar to those in Figure 4 but
for standard deviation.
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Figure 6: RMSE maps. The nine panels are similar to those in Figure 4 but for RMSE.
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We repeated this analysis over CONUS and the 2013-2020 period for the SSDF374

product created with AIRS alone, without CrIMSS. We found similar improvements in375

bias, standard deviation, and RMSE. The mean bias of the AIRS-only SSDF product376

over the entire domain was -0.08 K for daytime only, and -0.03 K for nighttime only.377

The overall RMSE was 2.52 K, 4% higher than the overall RMSE of the SSDF product378

created from both AIRS and CrIMSS.379

Figure 7 shows histograms of the NSAT error (retrieval/reanalysis - ISD) for the380

year 2013, over CONUS only. The three comparison datasets (AIRS, CrIMSS, and381

ERA5-Land) were matched separately to SSDF outputs, to ensure that the SSDF382

product and each corresponding comparison dataset are considering the same scenes.383

The SSDF error histograms are symmetric with a single mode and peak at 0 for both384

day and night, which is consistent with the errors being unbiased. The AIRS histogram385

exhibits a cold bias during the day and a warm bias at night. CrIMSS has a similar386

day/night bias shift, but of a smaller magnitude. A cold bias over land, particularly387

at higher temperatures, has been previously noted for both input datasets (Yue et al.,388

2020, 2021), although there have been few validation studies (Ferguson & Wood, 2010;389

Sun et al., 2021). The SSDF product exhibits smaller mean biases and RMSEs than390

either input dataset. On average, over both input datasets, daytime and nighttime,391

SSDF decreases mean bias magnitude by 81% and mean RMSE by 23% relative to the392

input datasets.393

Next, we examine the seasonality of bias and RMSE. Figure 8 shows the mean394

bias (retrieval/reanalysis – ISD) by month split into day/night to examine seasonality.395

There is a significant cold bias during the day for AIRS and CrIMSS that switches396

to a warm bias at night. During the day, AIRS has a smaller bias during winter397

months (Dec/Jan/Feb) and a larger bias during summer months (Jun/Jul/Aug). This398

is switched during nighttime where a larger warm bias is observed during winter and399

a smaller warm bias is observed during summer. These AIRS biases are of course also400

apparent in Figure 7. The SSDF product is relatively unbiased for both day and night.401

The SSDF bias magnitude is slightly larger during the day than night. From May to402

December, the SSDF product has a smaller bias at night than does ERA5-Land while403

during the day the reanalysis and the SSDF mean biases are of similar magnitude.404

Figure 9 shows mean RMSE (retrieval/reanalysis – ISD) by month split by day/night,405

i.e., the mean RMSE values calculated in 2-degree spatial bins. RMSE is largest for406

AIRS, particularly during the day. Generally, RMSE is higher in winter and lower in407

summer. During the day, the ERA5-Land has the lowest RMSE. At night, the SSDF408

RMSE is comparable and sometimes lower than the ERA5-Land RMSE.409

We next examine relative performance in hot and cold extremes. Figure 10 shows410

the mean bias (retrieval/reanalysis – ISD) by ISD percentile of the ISD matchups. The411

error bars are the standard error of the mean at the 95 percent confidence level. The412

lighter shade of every color is the matched SSDF corresponding to the comparison413

dataset. All retrievals and reanalysis do best in the mean state (25th to 75th per-414

centile). At the extremes, each of the datasets being compared to ISD have warm415

biases for low values (1st through the 15th percentile) and cold biases for high val-416

ues (85th through the 99th); in other words, these datasets dampen out capture cold417

or warm extremes represented in the ISD. The SSDF product captures the extremes418

better than the input datasets, AIRS and CrIMSS. However, the reanalysis generally419

does best, having the smallest bias regardless of percentile, and is better at capturing420

the extremes.421

We next examine performance at extremely high elevations. Figure 11 shows422

mean biases (retrieval/reanalysis – ISD) aggregated by ISD elevation. At around 2500423

meters, mean biases increase with elevation in the SSDF product, AIRS, CrIMSS, and424

reanalysis. Daytime mean biases at these high elevations are larger in SSDF, although425
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Figure 7: Histograms of errors for day (top) and night (bottom) for 2013 over CONUS,
for AIRS (blue), CrIMSS (red) and ERA5-Land (green). The dashed line is the SSDF
subset matched to the other datasets. Mean statistics of bias, RMSE, and the number of
samples are provided.

we note that the sample size is small. At night, SSDF shows lower mean biases than426

AIRS, CrIMSS, or ERA5-Land at high elevations.427

In order to increase the sample size for high-elevation cases, Figure 12 shows428

the mean biases aggregated by ISD elevation for elevations higher than 2000 meters429

over the period 2012-2020. During the day, the SSDF bias exceeds AIRS and CrIMSS,430

consistent with Figure 11. We hypothesize that this excess bias in SSDF for a very small431

number of data points at very high elevations is caused by the bulk-binning method432

for bias estimation. As Figure 11 shows, both remote sensing datasets exhibit a cold433

bias during the daytime at lower elevations. Because the two-degree hexagonal bins for434

bias estimation are dominated by lower elevations (as the problematic high elevations435

are high mountain surfaces), and because both remote sensing dataset biases switch436

signs from cold bias to warm bias at approximately 2500 m, the cold bias correction437

calculated from the bulk bins ends up exacerbating the warm bias from the input438

datasets at the highest elevations. In a future version of SSDF, we will improve the439
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Figure 8: Mean bias as a function of month for day (top) and night (bottom) for 2013
over CONUS. Numbers at the bottom indicate the number of data points, and are color-
coded according to dataset.

bias estimation of the input datasets, which could mitigate or eliminate this bias at440

the very small number of estimates elevations above 2500 m.441
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Figure 9: Mean RMSE as a function of month for day (top) and night (bottom) for 2013
over CONUS. Numbers at the bottom indicate the number of data points, and are color-
coded according to dataset.

Figure 10: Mean biases as a function of ISD percentile for 2013 over CONUS. Num-
bers at the bottom indicate the number of data points, and are color-coded according to
dataset.
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Figure 11: Mean biases as a function of ISD elevation for day (top) and night (bottom)
for 2013 over CONUS. Numbers at the top indicate the number of data points, and are
color-coded according to dataset.

–18–

ESSOAr | https://doi.org/10.1002/essoar.10510524.1 | CC_BY_NC_ND_4.0 | First posted online: Tue, 15 Feb 2022 08:19:21 | This content has not been peer reviewed. 



manuscript submitted to Earth and Space Science

Figure 12: Mean biases as a function of ISD elevation for day (top) and night (bottom)
over CONUS from 2012-2020 for AIRS, CrIMSS, and SSDF. Numbers at the top indicate
the number of data points, and are color-coded according to dataset.
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3.3 Validation of uncertainty estimates442

The SSDF algorithm provides a mean (prediction/estimate) and standard devi-443

ation (uncertainty) of the conditional distribution of true NSAT, given the available444

inputs; this distribution is termed the predictive distribution. In what follows, this445

is a Gaussian distribution, centered at the SSDF estimate. This information can be446

used to construct prediction intervals for the true NSAT. Here we provide a summary447

and probabilistic assessment of the SSDF predictive distribution along with related in-448

formation from the AIRS V7 and CrIMSS-CLIMCAPS V2 products. In the notation449

that follows, we use the subscript i in place of the areal unit notation Bi.450

• In addition to each SSDF NSAT estimate, Ŷi, the algorithm also provides the451

conditional standard deviation of the predictive distribution, denoted σ̂Ŷ ,i.452

• The AIRS V7 NSAT retrieval, Z1,i, is accompanied by a corresponding uncer-453

tainty estimate, denoted σ̂Z,1,i (Susskind et al., 2014). This estimate results454

from a regression model for predicting the absolute retrieval error given several455

predictors available from the retrieval.456

• The CrIMSS-CLIMCAPS V2 retrieval, Z2,i, also has a corresponding uncer-457

tainty estimate, denoted σ̂Z,2,i (N. Smith & Barnet, 2020). This estimate re-458

sults from a linear approximation of the posterior standard deviation of the true459

state given the observed radiances for a single footprint and is an output of the460

optimal estimation (OE) approach used in CLIMCAPS.461

Figure 13 shows histograms of these uncertainty estimates: σ̂Z,1, σ̂Z,2, and σ̂Ŷ462

across the CONUS data record. The solid line shows uncertainty estimates from AIRS463

(blue) and CrIMSS (red) while the dashed shows the corresponding matched SSDF464

uncertainty estimates. CrIMSS has a peak around 1.2 K with a narrow distribution;465

AIRS V7 has a peak between 1.5 and 2 K with a wide distribution. SSDF uncertainty466

histograms peak around 2 K.467

These uncertainty estimates are properties of distributions, whereas we define
error ei as a realization of a random variable that represents the difference between an
estimate and the true state. For example, the error for SSDF is eŷ,i = Ŷi − Yi, where
Yi is the ISD validation for colocation i. If the predictive distribution is assumed to
be Gaussian, the empirical coverage of intervals of the form

Ŷi ± c σ̂Ŷ ,i,

can be assessed for the ISD matchups. In the case of an unbiased estimate, “well-468

calibrated” uncertainty estimates, and a Gaussian distribution; intervals with c = 1469

should cover the true state Yi about 68% of the time, and about 95% of the time for470

c = 2.471

Figure 14 shows scatterplots of the joint distribution of the uncertainty estimate472

(x-axis) and the observed error (retrieval-ISD). There are many cases for AIRS and473

CrIMSS where the uncertainty estimate grossly underestimates the true error; over474

15% of the time for both datasets and for day and night, the true error is more than475

three times greater than the uncertainty estimate. However, this occurs about 3% of476

the time with SSDF in the day and fewer than 5% of the time at night. Overall, the477

CrIMSS uncertainty estimates are distributed too narrowly, and with a peak too low,478

to capture the true error. The AIRS uncertainty estimates also peak at a value below479

the peak of the error distribution, although the uncertainty estimate distribution is480

much wider, including a very long tail of high uncertainty estimates.481

In general, SSDF uncertainty estimates are consistent with statistical expecta-482

tions under Gaussian assumptions. For example, one would expect one-sigma uncer-483

tainty estimates to cover a standard error distribution 68% of the time, and we see484
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Figure 13: Histograms of uncertainty estimates for day (top) and night (bottom) for 2013
over CONUS.

that the SSDF uncertainty estimates do so roughly 65% of the time in daytime. Simi-485

larly, one would expect the estimates to cover 95% and over 99% at the 2- and 3-sigma486

levels, with SSDF covering about 90% and 97% during daytime.487
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Figure 14: Observed errors (retrieval - ISD) versus uncertainty estimates for day (top)
and night (bottom) for 2013 over CONUS. The colors show whether the range of each
observed error was within the uncertainty bound, as described in the text: 1×uncertainty
(green, should cover the true state about 68% of the time), 2×uncertainty (orange, should
cover the true state about 95% of the time), 3×uncertainty (red, should cover the true
state about 99% of the time) or > 3×uncertainty (black).
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3.4 Empirical distribution consistency488

The ISD record provides a sample of the empirical distribution of NSAT over489

CONUS. Here, we assess the relative consistency of the SSDF empirical distribution490

versus the other products against the ISD reference distribution. Figure 15 shows an491

example of the empirical cumulative distribution (ECDF) for the ISD (pink) and AIRS492

(blue). While it is almost certainly the case that the products’ ECDFs deviate from the493

ISD reference distribution in some subtle ways, we evaluate their relative consistency494

with ISD through a series of hypothesis tests. Figure 16 shows the difference between495

the ECDF of the retrieval/reanalysis to the ECDF of ISD. The AIRS ECDF has the496

largest difference to the ISD ECDF, particularly during the Day.497

Figure 15: ECDF for AIRS (blue) and ISD (pink) for day (top) and night (bottom) for
2013 over CONUS.

The SSDF estimates are tested against each of the other products (AIRS, CrIMSS,498

ERA5-Land) for night and day conditions. Each assessment is carried out using a ran-499

domization or resampling test (Wilks, 2006). For this test, the null hypothesis is that500

the empirical distributions of SSDF and the comparison product deviate equally from501

the ISD reference distribution. The alternative hypothesis is that either SSDF or the502

comparison product have an empirical distribution that is closer to the ISD reference503

distribution. For this procedure, the test statistic is computed as the difference in504

two-sample Kolmogorov-Smirnov (KS) statistics for the products versus ISD.505

For each instance of the test, we have a collection of matched triples {Ŷ,Zk,Y};
where Ŷ ≡ {Ŷi}; i = 1, . . . , n are the SSDF estimates, Zk ≡ {Zk,i}; i = 1, . . . , n are
the comparison products, and Y ≡ {Yi}; i = 1, . . . , n are the ISD NSAT. As above,
k = 1 for AIRS, k = 2 for CrIMSS, and here k = 3 for ERA5-Land. Then, test k has
a test statistic

γk = δ(Ŷ,Y)− δ(Zk,Y),

where δ is the traditional two-sample KS statistic. The KS statistic is the maximum506

difference in the two ECDFs being compared. Thus, the test statistic γk for the507

current test is a difference of ECDF deviations. A negative value is an indication that508

the SSDF distribution is closer to ISD than the comparison product.509
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Figure 16: The ECDF difference between the retrieval/reanalysis and the ISD color
coded for day (top) and night (bottom) for 2013 over CONUS.

The distribution of the test statistic under the null hypothesis can be estab-510

lished through a resampling procedure. The procedure should preserve the inherent511

dependence of the matched triples, but the assignment of the two comparison groups512

can be shuffled randomly. A null distribution is generated by repeating these steps513

m = 1, . . .M times:514

1. Define shuffled data vectors Wm,1 and Wm,2.515

2. For each validation matchup (i = 1, . . . , nk), assign Wi,m,1 = Ŷi and Wm,2,i =516

Zk,i with probability 0.5; otherwise assign Wm,1,i = Zk,i and Wi,m,2 = Ŷi. This517

effectively shuffles the labels for SSDF and the comparison product for each518

matchup.519

3. Compute the test statistic for the randomized samples,

γ0,m,k = δ(Wm,1,Y)− δ(Wm,2,Y),

The distribution of γ0,m,k provides the null distribution of the test statistic for each
test. Figure 17 displays the test statistics γk along with density plots of the null
distributions of test statistics γ0,m,k for M = 20, 000 resampled datasets for each test.
A two-sided p-value can be computed for each test as

pk =
1

M

M∑
m=1

Iγ(|γ0,m,k| > |γk|),

where Iγ is an indicator function.520
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The p-values for each of the resampling tests of SSDF versus other products are521

displayed as text in Figure 17. All tests, except the night comparison of SSDF and522

CrIMSS, yield p-values of 0, indicating a significant difference in consistency with the523

ISD reference distribution. These results can also be seen visually as the observed test524

statistics γk, shown as vertical lines, lie well outside the corresponding null distribu-525

tions. The tests indicate SSDF is more consistent with ISD than AIRS for both day526

and night conditions, as well as a favorable result for SSDF versus CrIMSS for day and527

versus ERA5-Land at night. The positive test statistic for SSDF versus ERA5-Land528

during the day indicates the reanalysis is more consistent with ISD in this case.529

Figure 17: Histogram of the KS statistic for AIRS (blue), CrIMSS (maroon) and ERA5-
Land (green), for day (top) and night (bottom) for 2013 over CONUS. The corresponding
p-value is color-coded on the left side.

3.5 Long-term stationarity530

We next assess the stationarity in the bias of the SSDF dataset. First, we exam-531

ine the annual mean bias over the entire record relative to the withheld ISD reference532

data. Figure 18 shows the annual mean bias (both day and night) for both the input533

datasets, as well as for two periods of SSDF: the pre-CrIMSS period (2003 to 2011,534

inclusive) and the post-CrIMSS period (2013 to 2020, inclusive). Shading shows two535

standard deviations of these annual bias estimates, with the two SSDF periods calcu-536

lated separately. We exclude 2002 as this year only includes 4 months of AIRS data,537

and we exclude 2012 as this year was a mixture of AIRS-only and AIRS-plus-CrIMSS.538

These summary data clearly show that SSDF significantly improves both the539

mean annual bias, and the standard deviation in mean annual bias, relative to the540
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input datasets. The mean of these annual bias estimates are -0.10°C, -0.23°C, and541

0.02°C for AIRS, CrIMSS, and SSDF respectively, from 2003 to 2020 inclusive for542

AIRS and SSDF and from 2013 to 2020 inclusive for CrIMSS. However, these data543

also suggest a step change in SSDF mean annual bias in the pre-CrIMSS and post-544

CrIMSS period. The mean of the SSDF mean annual bias estimates in the pre-CrIMSS545

and post-CrIMSS periods are -0.020°C and 0.076°C, respectively, a shift of about 0.1°C.546

This shift is small compared to the biases in the input remote sensing datasets, and the547

apparent downward trend in the AIRS dataset. Over-correction with the addition of548

the CrIMSS dataset might be an artifact of the bias estimation bulk-binning procedure.549

This small step change in bias does not occur in the AIRS-only SSDF product over the550

full AIRS record. Future versions of SSDF will use improved uncertainty quantification551

methods to estimate input dataset biases, which could mitigate or eliminate this small552

shift in annual mean bias in transitioning from the AIRS-only SSDF product to the553

two-instrument product. In the meantime, the first version of our product creates a554

more coherent and stable climate record than the two input datasets taken separately.555

Figure 18: Annual mean bias for each year of the data record, for the SSDF product and
each of the two remote sensing input products, relative to the withheld ISD data. Shading
shows two standard deviations of these annual bias estimates, with the two SSDF periods
calculated separately.

Figure 19 shows the histogram of the SSDF uncertainty estimates for 2011 (black)556

and 2013 (red). The mean uncertainty is provided as text. The histograms are com-557

parable. The 2011 (single instrument only) histogram is shifted slightly to the right558

suggesting higher uncertainty estimates with one instrument compared to two. In-559

deed, the mean SSDF uncertainty estimate is 2.15/2.21 (Day/Night) during 2011 and560

decreases to 2.12/2.09 in 2013. However, this is to be expected as the additional561

information from CrIMSS provides greater certainty for SSDF.562
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Figure 19: SSDF uncertainty histogram for 2011 (black) and 2013 (red) aggregated by
day (top) and night(bottom). Summary statistics of mean SSDF uncertainty are provided
as text on the upper left.
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4 Discussion and conclusion563

We have produced a new fused NSAT product over CONUS, from November 2012564

through December 2020, using Spatial Statistical Data Fusion of AIRS and CrIMSS565

remotely sensed NSAT. We also provided detailed validation using withheld ISD data,566

and comparison to ECMWF ERA5-Land reanalysis. Remote sensing data provides567

information to span the spatial domain, in situ data provides the information to correct568

the remote sensing data, and SSDF provides the means to join them into something569

greater than the sum of their parts. The fused gridded product has no missing data570

(apart from one day and night without either AIRS or CrIMSS-CLIMCAPS input571

data); has improved accuracy and precision relative to the input satellite datasets, has572

comparable accuracy and precision relative to to ERA5-Land and indeed significantly573

lower nighttime bias than ERA5-Land; and includes estimates that are more consistent574

with the observed errors relative to in situ ISD observations. To summarize, our575

NSAT SSDF pilot product is comparable in precision and accuracy to the cutting-576

edge ERA5-Land reanalysis, but it is a direct observational product that does not577

involve physical modeling. Furthermore, unlike reanalysis it could support near-real-578

time product creation for operational applications.579

SSDF is general and could be applied to any number of datasets estimating the580

same observable. It could be applied across a wide range of satellite observables, such as581

atmospheric composition, water vapor profiles, or vapor pressure deficit (the difference582

between the water vapour pressure and the saturation water vapour pressure), so long583

as uncertainty estimates of the input datasets can be obtained. We emphasize that the584

quality of the SSDF product depends on the quality of the bias and variance estimates585

of the input datasets.586

Our plans for future work include improving the bias and variance estimation587

using simulation-based uncertainty quantification (Hobbs et al., 2017; Braverman et588

al., 2021). Simulation-based uncertainty quantification has the potential to further589

improve the overall quality of the SSDF product. It could also mitigate or eliminate590

the two issues our validation has uncovered: increased bias at a small number of591

data points at elevations in excess of 2500 m, and a 0.1 K shift in annual mean592

bias when transitioning from the AIRS-only version (2002-2012) to the two input593

(AIRS+CrIMSS) SSDF version (2012-2020).594

We also plan to create an NSAT SSDF product over global land areas, expanding595

beyond CONUS, and apply the SSDF method to other hyperspectral surface products596

(e.g., vapor pressure deficit). Finally, we plan to develop SSDF products for satellite597

instruments that sample observables at different points in the diurnal cycle, to enable598

fusion of datasets from polar-orbiting and inclined platforms to make optimal use of599

all available remote sensing.600

Open Research601

The SSDF NSAT dataset described in this paper is available at602

http://dx.doi.org/10.5067/CPXNAPA2WSQ8.603

Publicly available data were obtained from the NASA Atmospheric Infrared604

Sounder and the Suomi-NPP projects, the NOAA Integrated Surface Databse, and605

the European Centre for Medium-Range Weather Forecasts reanalysis.606

Aqua AIRS V7 is available from the NASA GES DISC repository (AIRS Project,607

2019). The retrieved surface air temperature (TSurfAir), the corresponding error es-608

timate for TSurfAir (TSurfAirErr), and the corresponding quality flag (QC) (TSur-609

fAir QC) were obtained for the standard IR-only product.610
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CrIMSS-CLIMCAPS V2 is available from the NASA GES DISC repository (Barnet,611

2019). Near surface temperature (surf air temp), the corresponding QC flag (surf air temp qc),612

and the corresponding error estimate (surf air temp err) were obtained from the NSR613

product.614

NOAA ISD NSAT data is available using the rnoaa R package.615

ECMWF ERA5-Land gridded hourly 2 m temperature means are available from616

the Copernicus Climate Change Service (C3S) Climate Data Store (Copernicus 2017).617
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Appendix A Matchups and bias estimation623

In this section, we will elaborate in detail our procedure for matching between624

ISD and the instruments’ observations, and the consequent bias estimation process.625

For clarity, we establish the following notation. Let s, u, and v be latitude-longitude626

locations; e.g., s = (lat, lon). On a given day (or night) let Zk(u) be the value of627

the k-th instrument’s near-surface temperature retrieval centered at u. and focus on628

a single ISD station at location s during a single period. Let tI1(s), . . . , tIM (s) be the629

times at which observations are acquired at this station during the period. These time630

points may be irregularly spaced, and M can change from station to station. The ISD631

measurements are ZI(s, ZIm(s)), m = 1, . . . ,M .632

Let tk(u) be the acquisition times associated with the k-th instrument’s footprints633

centered at location u. In principle, u ranges over all footprint locations for the634

appropriate instrument during the entire period, but in practice these locations are635

grouped by granules. We denote granule number during the current period by g =636

1, . . . , 120, and the set of footprints belonging to granule g by Gkg . The time associated637

with Gkg is τkg . To ease the computational burden, u ranges only over locations in the638

single granule with time that is closest to tIm(s).639

A matchup associates the location and time of an ISD value,
(
s, tI(s)

)
, with the

location and time of the k-th instrument’s footprint in the period:
(
u∗, tk(u∗)

)
. The

matchup function is,

Mk
(
s, tIm(s)

)
=
(
u∗, tk(u∗)

)
,

u∗ = argmin
u

{
||u− s||, u ∈

(
Gkg∗ ∩ U time ∩ Uspace

)}
,

g∗ = argmin
g

{∣∣τkg − tIm(s)
∣∣} ,

U time =
{
u :

∣∣tk(u)− tIm(s)
∣∣ ≤ 1 hour

}
, Uspace = {u : ||u− s|| ≤ 100 km} .

Note that, for a given instrument and period, there will only be one granule that640

satisfies the criterion provided by g∗.641

For a given ISD station (indexed by location s) in the current period, p, we create
the sets of matchup values for the k-th instrument as follows,

Ak(p, s) =

{
ZI
(
s, tIm(s)

)
, Zk

(
Mk
(
s, tIm(s)

))}M(p,s)

m=1

for all ISD time points at s indexed by m = 1, . . . ,M(p, s). p is identified by a date642

and a mode (day/night) indicator, e.g., p = (d, j) = (2013-01-01, day). M(p, s) is the643

number of ISD station values in period p at location s. There is at most one AIRS and644

one CrIMSS footprint associated with each station-time, but the same footprint can645

be associated with more than one station-time. Thus, Ak(p, s) may contain multiple646

elements if there is more than one ISD measurement during period p at location s.647

They may also be empty if there are no matching AIRS or CrIMSS footprints.648

After creating Ak(p, s) for all periods and ISD locations, we create supersets of
matchup value pairs by combining across three-day moving windows, by mode:

Akj(d, s) = Ak(d− 1, j, s) ∪ Ak(d, j, s) ∪ Ak(d+ 1, j, s), Akj(d) =
⋃
s

Akj(d, s).

j ∈ {day,night}. We chose the three-day time window after experimenting with shorter649

and longer windows. Shorter windows did not provide adequate sample sizes while650

longer windows failed to capture weather-related changes. Ideally, window duration651

would be as short as possible since longer time windows result in larger variance652

estimates in the fused data, relative to withheld ISD data.653
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The final step before actually computing estimated bias and variance for each
AIRS and CrIMSS footprint is to tessellate a 240 km (approximately two degrees),
hexagonal spatial grid over CONUS. We do this by creating a discrete global grid
using the DGGRID software package (Sahr et al., 2003; Sahr, 2019). One of the
centers, for example, is at 87.72550324 W, 40.7908839 N, near Watseka, Illinois; this
center uniquely determines the tessellated grid. All elements of Akj(d) are sorted in to
these grid cells based on the instrument’s footprint locations. Formally, let i ∈ 1, . . . , L
index grid cell centers, and let 1i(u) = 1 if u lies inside cell i, and zero otherwise. For
grid cell i, mode j, and date d, set

Akji (d) =

{{
ZI
(
s, tIm(s)

)
, Zk

(
u∗ms, t

k(u∗ms)
)

: 1i(u
∗
ms) = 1

}M(d,j,s)

m=1

}
all s

,

where M(d, j, s) is the number of time points acquired by the ISD station at s on654

day d in mode j, L is the total number of hexagonal grid cells, and we write u∗ms to655

emphasize its dependence on m and s via the matchup functions.656

The bias assigned to all footprints from the k-th instrument observed on day d
in mode j belonging to grid cell i is,

bkdji =
1

|Akji (d)|

∑
all s

M(d,j,s)∑
m=1

[
Zk
(
u∗ms, t

k(u∗ms)
)
− ZI

(
s, tIm(s)

)]
1i
(
u∗ms

)
.

The corresponding variance assigned to all footprints observed on day d in mode j
belonging to grid cell i is,

vkdji =
1

|Akji (d)|

∑
all s

M(d,j,s)∑
m=1

[
Zk
(
u∗ms, t

A(u∗ms)
)
− ZI

(
s, tIm(s)

)
− bkdji.

]2
1i
(
u∗ms

)
,

Subtracting the biases from the satellite footprints yields bias-corrected data.
Denote an footprint acquired by the k-th instrument on day d in mode j, centered at
location u, by ZAdj(u), where we suppress the argument tA(u) since, for a given date
and mode, location and time are confounded. The bias-corrected value is denoted by
Zk∗dj (u) as follow:

Zk∗dj (u) = ZAdj (u)− bAdji∗ , i∗ = argmax
i

1i(u),

with associated variance vkdji∗ .657
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