## README file for sample CrIS PCA/RED data

Joe Taylor, Dave Tobin, Greg Quinn

CrIS L1B Science and Software Team
Contact: cris.l1b.support@ssec.wisc.edu
09 May 2024
This is a README file to explain the contents of sample NASA NOAA 20 CrIS PCA/RED data files and to show example use and reconstruction of radiance spectra. This README will form the basis for more official documentation (ATBD, User Guide) to come later.

This sample data is expected to be very similar to the first version of the official data. A few possible exceptions are: (1) addition of other meta-data variables depending on user feedback, (2) More local PCs (perhaps 10 instead of 5) depending on further analysis of rare events, (3) refinement of RED spectral regions and scaling.

Data may be obtained locally (at SSEC) from:
/ships22/crisl1b/CrIS-J1/PCA_RED/cris_I1b_fsr/atmos_sips/0.2.0
Or from GES-DISC at:
https://disc.gsfc.nasa.gov/datacollection/SNDRJ1CrISL1BPCARED 3.0.html
The example data file used for this README is:
SNDR.J1.CRIS.20240120T1812.m06.g183.PCA_RED.beta.vO3_00.W.240322145711.nc
This is a NetCDF file which can be read with a range of software packages. Matlab is used here. The attached Matlab function rd_pca_red_file.m reads the data from the PCA_RED file, and also performs the reconstruction of radiance spectra depending on input flags. This additionally uses pca_expandM.m which is also included. We have also developed Python code to perform the same operation, which is available at the following URL:
https://gitlab.ssec.wisc.edu/cris I1b/user/-/tree/master/PCA RED/py/cris pca red

## Contents of the PCA_RED files:

Using rd_pca_red_file.m to read the contents:
>> pca_file = 'SNDR.J1.CRIS.20240120T1812.m06.g183.PCA_RED.beta.v03_00.W.240322145711.nc';
>> d = rd_pca_red_file(pca_file);
There are two basic classes of variables in the file: ones which are unique to the PCA_RED file and ones which are replicated from the corresponding L1B file, for convenience so the user does not have to have both L1B and PCA_RED files available. Note that rd_pca_red_file converts variables to double precision floats as they are read in.

The typical dimension sizes are FOV (9), cross-track FOR (30), along-track FOR (45), and wavenumber ( 717 LW, 869 MW, 637 SW, 2223 all 3 bands). Note that the order of array dimensions presented here uses Matlab's convention. Dimension ordering will be reversed when inspecting the data with NetCDF tools like ncdump or with programming languages that use the opposite convention like Python.

## Variables carried over from the L1B file:

(See the L1B documentation for descriptions)

| obs_time_tai93: | $[30 \times 45$ double $]$ |
| :--- | :--- |
| lat: | $[9 \times 30 \times 45$ double $]$ |
| lon: | $[9 \times 30 \times 45$ double $]$ |
| lat_bnds: | $[8 \times 9 \times 30 \times 45$ double $]$ |
| lon_bnds: | $[8 \times 9 \times 30 \times 45$ double $]$ |
| land_frac: | $[9 \times 30 \times 45$ double $]$ |
| sol_zen: | $[9 \times 30 \times 45$ double $]$ |
| sat_zen: | $[9 \times 30 \times 45$ double $]$ |
| sat_azi: | $[9 \times 30 \times 45$ double $]$ |
| asc_flag: | $[45 \times 1$ double $]$ |
| mean_anom_wrt_equat: $[45 \times 1$ double $]$ |  |
| rad_Iw_qc: | $[9 \times 30 \times 45$ double $]$ |
| rad_mw_qc: | $[9 \times 30 \times 45$ double $]$ |
| rad_sw_qc: | $[9 \times 30 \times 45$ double $]$ |
| scan_sweep_dir: | $[30 \times 1$ double $]$ |
| for_num: | $[30 \times 1$ double $]$ |
| fov_num: | $[9 \times 1$ double $]$ |
| wnum_lw: | $[717 \times 1$ double $]$ |
| wnum_mw: | $[869 \times 1$ double $]$ |
| wnum_sw: | $[637 \times 1$ double $]$ |

## Variables unique to PCA_RED:

| wnum_all: | $[2223 \times 1$ double $]$ | Wavenumber vector |
| :--- | :--- | :--- |
| nz_norm: | $[2223 \times 1$ double $]$ | NEDN vector |
| global_pc_score: | $[150 \times 9 \times 30 \times 45$ double $]$ | Global PC scores |
| local_pc_eig: | $[2223 \times 10$ double $]$ | Local PCs |
| local_pc_score: | $[10 \times 9 \times 30 \times 45$ double $]$ | Local PC scores |
| local_pc_mean: | $[2223 \times 1$ double $]$ | Local PC mean spectrum |
| pca_qc: | $[9 \times 30 \times 45$ double $]$ | QC for PCA product |
| rad_outlier: | $[2223 \times 100$ double $]$ | Outlier radiance spectra |
| pca_red: | $[25 \times 9 \times 30 \times 45$ double $]$ | Rapid Event Detection scores |

## Variables not carried over from the L1B file:

There are many other variables in the L1B file that are not carried over into the PCA/RED files. See the L1B file documentation for a list of those variables. And, please let us know if there are additional variables that you would like to be included in the PCA/RED files.

Related to this, we are also considering adding a few variables from the IMG files into the PCA/RED files, for example the basic cloud fraction variable.

## Computing Reconstructed Radiances:

To compute reconstructed radiances using rd_pca_red_file.m, provide as inputs the name of the Global PC file and the reconstruction option. The Global PC file can be obtained at the following URL:
https://gitlab.ssec.wisc.edu/cris_11b/user/-/raw/a1b5144bb003c4578d89e8ef7c6c5b9257f6c4af/PCA_RED/glo bal pcs/SNDRGBLPCV2.J1.CRIS.20180325T0000.20190324T2354.L1B.v03 08 nznorm1 latwt1 qc2.nc?inline=f alse

For full (hybrid) reconstruction, use rflag $=1$. Global-only and local-only radiance reconstruction are also possible.

```
>> GPCfile = 'SNDRGBLPCv2.J1.CRIS.20180325T0000.20190324T2354.L1B.v03_08_nznorm1_latwt1_qc2.nc';
>> [d,GPC] = rd_pca_red_file(pca_file,GPCfile,1);
```

Returns the additional variables of reconstructed radiances in structure $d$ :

| rad_Iw | $[717 \times 9 \times 30 \times 45$ double $]$ |
| :--- | :--- |
| rad_mw | $[869 \times 9 \times 30 \times 45$ double $]$ |
| rad_sw | $[637 \times 9 \times 30 \times 45$ double $]$ |

And the global PC variables are in structure GPC:

| $U$ | $[2223 \times 150]$ | Global PCs |
| :--- | :--- | :--- |
| $M$ | $[2223 \times 1]$ | Global mean spectrum |
| $D$ | $[2223 \times 1]$ | Global eigenvectors |
| V | $[2223 \times 1]$ | wavenumbers |
| nedn | $[2223 \times 1]$ | NEDN |

The basic equation for this reconstruction is:

```
Rad = ( GPC.U x d.global_pc_score + GPC.M ) + ( d.local_pc_eig x d.local_pc_score + d.local_pc_mean )
```

where the " $x$ " represent matrix multiply operations, and noise normalized radiances using the NEDN values of d.nz_norm (equal to GPC.nedn) are used, as shown in rd_pca_red_file.m. This is done using the [ $2223 \times 1$ ] wavenumber dimensions, and then extracted into LW, MW, SW rad variables.

The pca_qc variable captures the Quality control of the PCA process on a footprint level basis with values of: 0 : No issues detected
1: Hybrid reconstructed radiance residual exceeds threshold in any spectral channel. Original radiance stored in rad_outlier variable.
2: Hybrid reconstructed radiance residual exceeds threshold in any spectral channel. Original radiance not stored in rad_outlier variable.
3: PCA not performed on observation (not currently implemented in beta product)
For cases where the PCA QC fails, the original L1B radiance spectra are saved into the rad_outlier variable, with up to 100 outliers per granule. To determine where these outlier spectra are indexed (into the $9 \times 30 \times$ 45) array, the following matlab calculations can be used:
>> index = find(d.pca_qc ==1);
>> $n=$ length(index);

Subscripts can be computed from the linear indices using ind2sub.m, e.g.:
>> [i,j,k] = ind2sub(size(d.pca_qc),index);

## PCA_RED

The pca_red variable flags interesting observations contained in the local PC data for 25 selected wavenumber regions. Radiance "anomalies" determined from the local PC contributions to the reconstructed radiances are scaled to have values from 0 to 127 , so that these features can be easily identified. Table 1 contains the wavenumber regions and scaling information for each of the 25 cases. Feedback from beta users will be used to refine the PCA RED regions and channels within each region.

Table 1. PCA RED spectral regions and radiance scaling implemented in the beta product.

| bin \# | Name |  | wavenumbers | note | min radiance | max radiance | basis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | longwave band | OTHER | 650-1095 |  | 0 | 0.25 | Hunga Tonga |
| 2 | midwave band | OTHER | 1210-1750 |  | 0 | 0.1 | Hunga Tonga |
| 3 | shortwave band | OTHER | 2155-2550 |  | 0 | 0.02 | Aus Fire |
| 4 | CO2 (LW) | OTHER | 650-710 | Cutoff at 710 to avoid C2H2, Furan, and HCN channels | 0 | 0.4 | Aus Fire, Global Maps |
| 5 | HCN (Hydrogen Cyanide) | FIRE | 712.5 |  | 0 | 0.65 | Aus Fire |
| 6 | C 2 H 2 (Acetylene) nu5 | FIRE | 729.375, 730.000 | Ethyne | 0 | 0.7 | Aus Fire, Quebec Fire |
| 7 | C4H4O (Furan) | FIRE | 744.375 |  | 0 | 0.65 | Aus Fire |
| 8 | C2H3NO5 (PAN) | OTHER | 786.8750, 787.5000, 788.1250 |  | 0 | 0.25 | 2022 Sep 12 |
| 9 | C2H6 (Ethane) nu9 | OTHER | 814.375,825 |  | 0 | 0.19 | hassi messaoud oil field, Quebec fire, World Map |
| 10 | HNO3 (Nitric acid) nu5 2nu9 | VOLCANO | 878.125, 878.750, 879.375, 895.625, 896.25 |  | 0 | 0.2 | Hunga Tonga, Global Maps |
| 11 | $\begin{aligned} & \mathrm{C} 5 \mathrm{H} 8 \text { (Isoprene) } \\ & \text { nu28 } \end{aligned}$ | OTHER | 893.125, 893.750 | Channels from Wells SSTM meeting and material. Not getting good detection results in beta PCA RED. | 0 | 0.2 | Global Maps |
| 12 | C3H6 (Propylene) | FIRE | 911.875, 912.500 | Propene | 0 | 0.28 | Aus Fire |
| 13 | C2H4 (Ethylene) nu7 | FIRE | 922.5,949.375 | Ethene | 0 | 1.5 | Aus Fire, Quebec Fire |


| bin\# | Name |  | wavenumbers | note | min radiance | max radiance | basis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | NH3 | FIRE | $930.000,931.250,931.875$, $964.375,965.000,965.625$, 966.250, 966.875, 967.500 |  | 0 | 0.25 | Aus Fire, Quebec Fire |
| 15 | 03 | OTHER | $\begin{aligned} & \text { 1049.375, 1055, 1056.25, } \\ & 1059.375 \end{aligned}$ | Should move to bin \#16 for next release (if sorting by wavenumber) | 0 | 0.3 | Global Maps |
| 16 | CH 3 OH <br> (Methanol) | FIRE | 1033.75 |  | 0 | 0.55 | Aus Fire, Global Maps |
| 17 | HCOOH (Formic Acid) | FIRE | 1070-1080 |  | 0 | 0.32 | Aus Fire, Global Maps |
| 18 | CH4, N2O nu1 region 1 | OTHER | 1240-1275 | Trying to avoid SO2, HNO3 overlap; would be good to identify specific channels to use | 0 | 0.15 | Global Maps |
| 19 | $\mathrm{CH} 4, \mathrm{~N} 2 \mathrm{O}$ nu1 region 2 | OTHER | 1275-1310 | Trying to avoid SO2, HNO3 overlap; would be good to identify specific channels to use | 0 | 0.15 | Global Maps |
| 20 | HNO3 (Nitric acid) nu3 | VOLCANO | 1323.75, 1324.375, 1325 | CH 4 interfering, consider removing | 0 | 0.23 | Hunga Tonga |
| 21 | SO2 nu3 | VOLCANO | 1365-1377.500 | would be good to identify specific channels to use | 0 | 0.23 | Hunga Tonga |
| 22 | $\begin{aligned} & \text { 1653.125 H2O } \\ & \text { line } \end{aligned}$ | OTHER | 1653.125 | 1653.125 | 0 | 0.11 | Hunga Tonga |
| 23 | CO | FIRE | $\begin{aligned} & 2174.3750,2175.625,2178.1250, \\ & 2181.8750 \end{aligned}$ | near band edge: ringing? | 0 | 0.07 | Aus Fire |
| 24 | N2O nu3 | OTHER | 2220.625, 2221.875, 2222.5, <br> 2223.125, 2223.75, 2225.6250 | $\begin{aligned} & \text { 2220.6250, 2221.8750, 2222.5000, 2223.1250, } \\ & 2223.7500,2225.6250 \end{aligned}$ | 0 | 0.022 | Global Maps |
| 25 | CO2 SW | OTHER | 2250-2400 | will be susceptible to glint, consider creating blue spike PCA RED range | 0 | 0.018 | Quebec Fire, Global Maps |

## Beta Product Notes and Caveats

1. PCA RED score scaling currently uses a pre-set radiance range for each PCA RED region. The minimum radiance value is zero for all 25 PCA RED spectral regions, while the upper radiance limit is PCA RED region dependent. The lower and upper radiance limits for the PCA RED score scaling will continue to be assessed and refined as needed (beta product user feedback is appreciated).
2. PCA RED wavenumber indices: developer analysis and feedback from beta product users will be used to refine the PCA RED regions and channels used within each region for the PCA RED scores.
3. Future releases will include QC improvements to make optimal use of the L1B QC vars.
4. Future releases will further optimize performance and robustness for PCA RED product generation from L1B data with QC $=0$, fill values, or missing bands.
5. The threshold value for assessing reconstructed radiance accuracy is approximately $3 \times N E S R$ in the beta sample data product. This threshold may need further refinement.
6. PCA RED scores are scaled the same for ascending and descending orbits. It may produce better results to have different scaling for ascending and descending orbits.
7. PCA RED processing is currently conducted on a single granule basis without context granules. Adding context granules would likely remove any obvious granulation that is evident in the current beta product and could also improve the local reconstruction.
8. The current beta product uses the same PCA RED score scaling for all CrIS sensors.
9. The current beta product can store a maximum of 100 "outlier radiances" for each 6 -minute granule. This limit could be increased in future versions if needed. Extremely large events such as the Australian wildfires or the Hunga Tonga eruption result in more than 100 outlier radiances per granule.
10. Determining the along-track, across-track, and field-of-view indexes for spectra stored in rad_outlier is error prone. The official product will provide a simplified way to retrieve the outlier indexes.
11. The current beta product uses 150 Global Eigenvectors and 10 Local Eigenvectors for the radiance reconstruction. Extensive assessment and feedback from beta users will be used to determine if the number of eigenvectors needs to be modified for future releases.
12. There is a higher rate of reconstruction residual outliers in South Atlantic Anomaly (SAA) region. This is under investigation and will be improved in future releases.
13. This beta sample product is missing many global NetCDF attributes needed to fully describe the overall file contents. A complete set of global attributes will be present on the official product.
14. The spectral_resolution is missing from the general attributes in the beta sample product.

## rd_pca_red_file.m

```
function [d,GPC] = rd_pca_red_file(fname,gpcfile,rflag);
%
% function [d,GPC] = rd_pca_red_file(fname,gpcfile,rflag);
%
% Read contents of CrIS PC file and (optionally) compute reconstructed radinces
%
% Inputs
% fname: Name of CrIS PC file
% e.g. SNDR.J1.CRIS.20220118T0154.m06.g020.PCA_RED.v00_01...nc
% gpcfile (Optional): Name of Global PC file
% e.g.
% SNDRGBLPCv2.J1.CRIS.20180325T0000.20190324T2354.L1B.v03_08_nznorm1_latwt1_qc2.nc
% If gpcfile is input, the output includes reconstructed radiances,
% and global PC data in structure GPC
%
% rflag: (Optional):Flag to determine what type of radiance reconstruction.
% values: 1 or not input: Hybrid; 2: Global-only; 3: Local-only
%
% Uses: pca_expandM.m
%
% 25-Aug-2023
%
warning off
d.info = ncinfo(fname);
for vv = 1:length(d.info.Variables)
    try
        varname = d.info.Variables(vv).Name;
            d.(varname) = ncread(fname,varname);
        catch
            fprintf(1,'Could not read %s\n',varname);
    end
end
if nargin >= 2
GPC.U = double(ncread(gpcfile,'U'));
GPC.M = double(ncread(gpcfile,'M'));
GPC.D = double(ncread(gpcfile,'D'));
GPC.v = double(ncread(gpcfile,'v'));
GPC.nedn = double(ncread(gpcfile,'nedn'));
globalCoef = double(d.global_pc_score(:,:));
localCoef = double(d.local_pc_score(:.,));
nednm = repmat(double(d.nz_norm),[1,size(globalCoef,2)]);
locaIPC.U = double(d.local_pc_eig);
locaIPC.M = double(d.local_pc_mean);
RecRadGlobal = pca_expandM(globalCoef,GPC) .* nednm; % double, [nCHAN_all x nrec]
if nargin == 2 | (nargin == 3 & rflag == 1) % Hybrid
    RecRes = pca_expandM(localCoef,localPC).* nednm;
    RecRad = RecRadGlobal + RecRes;
```

elseif nargin == 3 \& rflag == 2 \% Global only
RecRad = RecRadGlobal;
elseif nargin == 3 \& rflag == $3 \%$ Local only
RecRes = pca_expandM(localCoef,localPC) .* nednm;
RecRad = RecRes;
end
Iw_indx = find(d.wnum_all >= nanmin(d.wnum_Iw) \& d.wnum_all <= nanmax(d.wnum_lw));
$m w \_i n d x=$ find(d.wnum_all >= nanmin(d.wnum_mw) \& d.wnum_all <= nanmax(d.wnum_mw));
sw_indx $=$ find(d.wnum_all >= nanmin(d.wnum_sw) \& d.wnum_all <= nanmax(d.wnum_sw));
sz = size(d.global_pc_score);
sz(1) = length(d.wnum_all);
RecRad = reshape(RecRad,sz);
d.rad_lw = RecRad(lw_indx,.,.,:;);
d.rad_mw = RecRad(mw_indx,.,.,:,:);
d.rad_sw = RecRad(sw_indx,.,.,:);
end
return

## pca_expandM.m

$$
\begin{aligned}
& \text { function [x,rc] = pca_expandM( coef, PC ) } \\
& \text { [ntr,nX] = size(coef); } \\
& \text { PCM = repmat(PC.M,1,nX); } \\
& \text { col = PC.U(:,1:ntr) * coef + PCM; } \\
& x=\text { col; } \\
& \text { rc = } ;
\end{aligned}
$$

