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Abstract 

This Algorithm Theoretical Basis Document (ATBD) describes the Joint Single Footprint 

Retrieval Algorithm (JoSFRA) applied to Atmospheric Infrared Sounder (AIRS) thermal infrared 

spectra. In this version, JoSFRA retrieves atmospheric parameters, including temperature and 

water vapor profiles, surface temperature, cloud-top temperature, cloud optical depth, and 

effective cloud particle size. By putting clouds in the forward model and avoiding combining 

footprints in “cloud-clearing,” retrievals are made at the scale of the AIRS native footprint 

(~13.5 km at nadir) without the loss of horizontal resolution from combining spectra of adjacent 

footprints. An optimal-estimation scheme forms the basis of the retrieval, with cloud a priori 

from coincident retrievals by the co-located Moderate Resolution Imaging Spectroradiometer 

(MODIS). 
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1. Introduction 

The Atmospheric Infrared Sounder (AIRS) instrument is a thermal infrared grating spectrometer, 

providing global measurements of atmospheric temperature and water vapor profiles (among 

other parameters) for use within weather forecast models, assimilation models, process studies, 

and climate studies. (See, for example, Aumann et al., 2003, and Chahine et al., 2006.) AIRS 

was launched May 4, 2002 in sun-synchronous, polar orbit on the EOS Aqua satellite and began 

routine measurements on August 31, 

2002 at an altitude of 705 km. It has 

been in near-continuous operation to 

date. 

AIRS delivers approximately 2.9 

million spectral observations every 

24 hours, with 2378 channels 

between 3.7 and 15.4 m (although 

in practice, only a subset of these 

channels are used for retrievals). 

AIRS was designed for co-located 

measurements with the microwave Humidity Sounder of Brazil (HSB; failed in February, 2003), 

and the Advanced Microwave Sounding Unit (AMSU) microwave instrument. Nine AIRS 

observations (each with nadir horizontal resolution of ~13.5 km) are in a 3 x 3 grid over a single 

AMSU observation with a nadir horizontal resolution of ~45 km (Figure 1). The design of the 

AIRS/AMSU/HSB system was to overcome the complication of cloud contamination in infrared 

retrievals. This complication is illustrated in Figure 2, which samples the effect of clouds on 

adjacent spectra observed by AIRS. The basic premise of the AIRS operational retrieval was that 

all fields (temperature, water vapor, surface temperature etc.) were homogeneous over the 

AMSU field-of-regard except for the cloud parameters, which would be variable among the nine 

AIRS footprints. Regression calculations would be applied to a 3x3 ensemble of AIRS spectra to 

estimate a “cloud-cleared” spectrum, upon which retrievals would be made assuming no clouds. 

 
 
Figure 1: Geometry of AIRS/AMSU/HSB observation from the 

AIRS instrument. (From Aumann et al., 2003). 

 



 7 

This would be the case if AMSU 

data were used in conjunction with 

AIRS spectra or if AIRS spectra 

were used alone. 

While this approach greatly 

simplifies forward modelling, an 

obvious drawback is that the 

horizontal resolution of the 

retrievals is reduced from the 

AIRS measurements; an AIRS 

footprint at 13.5 km at nadir is 

used for a ~45 km footprint 

retrieval of temperature, moisture etc., with only effective cloud fraction and cloud top 

temperature on the native AIRS resolution. When combining AIRS data, and assuming constant 

non-cloud quantities, horizontal gradients can be masked particularly for water vapor with its 

shorter horizontal length scales compared to temperature (e.g., Kahn and Teixeira, 2009). Since 

the design stage era of AIRS in the 1990’s, increased computing power coupled with advances in 

modelling cloudy spectra have allowed greatly improved hyperspectral infrared retrievals of 

atmospheric parameters on a cloudy scene. To be sure, this means a more complicated forward 

modelling process and does not solve the issue of thermal infrared retrieval of parameters below 

a thick cloud. However, it does allow retrievals to be made on the footprint of an infrared 

observation, without losing horizontal resolution from regressing spectra to a zero-cloud state. 

 

Herein, we describe the Joint-Operational Single Footprint Retrieval Algorithm (JoSFRA). This 

effort retrieves atmospheric parameters from nadir thermal infrared spectra in their native 

horizontal footprint, using clouds in the forward model, and without recourse to a cloud-cleared 

state. The overall algorithm uses an optimal-estimation scheme (Rodgers et al., 2000) for 

retrieval. Forward modelling is done by using a delta-4-stream (D4S) approach for cloud 

transmissivities (Ou et al., 2013) incorporated into the operational AIRS forward model, the 

Standalone AIRS Radiative Transfer Algorithm (SARTA; Strow et al., 2003). For a priori 

parameters, National Center for Environmental Prediction (NCEP) forecasts are used for 

 

Figure 2: AIRS level 1b brightness temperature observations of 

adjacent cloudy spectra. Data are from daytime Granule 44, 6 

September 2002. Average cloud-top temperatures and cloud optical 

depths are estimated from coincident MODIS L2 retrievals, averaged 

on the AIRS spatial response function. (From Irion et al., 2018)  
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atmospheric and skin temperatures (Tatm, Tsurf), water vapor, and surface pressure. A priori cloud-

top temperature (Tcldtop), optical depth (cld) and daytime effective particle radius (reff) are derived 

from co-located Moderate Resolution Infrared Sounder (MODIS) retrievals (Platnick et al., 

2017) averaged over the AIRS spatial footprint. The a priori optical depth is derived from the 

MODIS cloud emissivity (which is produced for both daytime and nighttime), and not from the 

MODIS cloud optical depth, which is a daytime-only product. 

1.1 Changes to algorithm from Irion et al. (2018) 

This ATBD has similarities to Irion et al. (2018), which described an earlier version of this 

retrieval. It is not necessary for the reader of this ATBD to be familiar with Irion et al., but for 

the convenience of those who are familiar with that paper, we describe significant changes to the 

algorithm below. 

1. Instead of all parameters being retrieved simultaneously, the retrieval is now performed 

in two steps. In “Step One,” simultaneous retrieval of the temperature and CO2 profiles, 

surface temperature, cloud properties and emissivity (over land) is performed, mostly on 

the 14 m CO2 band and window regions, with ozone and water vapor profiles also 

retrieved as “interferent” gases. (The 9.6 m band of ozone is not used in the retrieval.) 

In “Step Two,” the water vapor profile a priori reverts back to the NCEP forecast, the 

channel selection is modified, and only the water vapor profile is retrieved, using the 

retrievals from Step One as fixed parameters.  

2. The a priori temperature and water vapor profiles were changed from European Center 

for Medium-Range Weather Forecasting (ECMWF) forecasts to those provided by the 

National Center for Environmental Prediction (NCEP). Profiles are still spatially and 

temporally interpolated to the AIRS observation. In converting NCEP relative humidity 

to specific humidity or water mixing ratio, the equations of Murray (1967) are used for 

calculation of the saturation pressures. In a holdover from the earlier version of the 

retrieval, the equations of Wagner and Pruß (2002) are used for calculation of the output 

relative humidity.  

3. Co-location and averaging of MODIS cloud data on the AIRS spatial footprint is now 

done using an adaptation of the fast method of Wang et al. (2016). 
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4. A priori cloud optical depth is now calculated from the MODIS cloud emissivity, which 

is available day and night, instead of using the daytime-reported MODIS cloud optical 

depth and assuming a fixed optical depth a priori at night. 

5. In determining whether a scene is clear or not, or has cirrus, liquid or mixed-phase cloud 

but an unknown cloud-top temperature, we also use ice cloud and liquid cloud “scores” 

as calculated by the method reported by Jin and Nasiri (2014) and Kahn et al. (2014) in 

addition to the use of MODIS cloud mask flags. 

6. The optical depth of a forward model layer containing a cloud top was previously 

calculated assuming that the cloud occupied the entire layer. The layer optical depth is 

now calculated with the layer separated into a clear sublayer overlaying a cloudy sublayer 

(with the boundary being the cloud top pressure). 

7. Surface emissivities were previously entered as fixed parameters. They are now retrieved 

over land at selected hinge frequencies, but remain as fixed parameters over water. Land 

emissivity is retrieved if the land fraction of the scene is greater than 1% as reported by 

the AIRS Level 1b spectral data set. The a priori land emissivities are calculated by 

simple linear interpolation to the center of the AIRS footprint, and are no longer averages 

weighted by the AIRS spatial response function. 

8. Since the retrieval is now two step, quality-control criteria have been modified to have 

two separate outputs – one output for the “Step One” retrievals (temperature, clouds, 

CO2, O3, and emissivity if over land), and a separate output for the “Step Two” retrieval 

(H2O). If a Step One retrieval fails, then no Step Two retrieval is attempted. It is also 

possible for a Step One retrieval to pass quality control while a Step Two retrieval does 

not.  

1.2 Notes on the retrieval of carbon dioxide and ozone 

The retrieval of the temperature profile in the thermal infrared generally relies on the thermal 

sensitivity of CO2 spectral lines, but there can also be retrieval sensitivity to changes in the actual 

CO2 abundance. While retrieval sensitivity to CO2 is small compared to Tatm, early testing 

indicated a small improvement in temperature retrievals compared to radiosondes when the CO2 

amount was retrieved simultaneously with temperature. CO2 retrievals are thus included in 

JoSFRA output, but we again note that the sensitivity is small, and the accuracy and precision of 
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these retrievals have not been well evaluated. We therefore do not recommend use of JoSFRA 

CO2 retrievals for further research purposes. 

For ozone, we avoid channels in the 9.6 m O3 band as its inclusion often results in a failure for 

the retrieval to converge. (As noted by Kulawik et al., 2006, for the Tropospheric Emission 

Sounder retrieval, difficulty in finding a global minimum can happen when retrieving all species 

at once.) However, including ozone in the retrieval (through its weak absorption within the 14 

m CO2 band) but not including the strong 9.6 m band improves the overall fitting, with fewer 

failed retrievals. We therefore retrieve O3 only as an “interferent” gas solely to improve the 

fitting within the 14 m CO2 region, and these O3 retrievals are not recommended for further 

study. Retrieval of ozone can be revisited in future versions of JoSFRA. 
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2. Single-footprint retrieval algorithm 

The JoSFRA retrieval process proceeds in two steps, with simplified block diagrams in Figures 3 

and 4. For convenience, blocks are annotated with the section numbers of this ATBD where 

more information can be found.  

2.1 Optimal estimation cost function 

The mathematical basis for optimal estimation retrievals is described by Rodgers (2000). For 

JoSFRA, implementation is similar to that of the Tropospheric Emission Spectrometer (TES; 

Bowman et al, 2006), but with significant differences in the treatment of clouds. The retrieval 

 

Figure 3: Simplified flowchart for Step One of JoSFRA retrieval. Notations refer to sections within this ATBD.  
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algorithm minimizes the difference between an observed and a forward-modelled radiance, 

subject to a quadratic constraint, through the cost function: 

𝐶 = (𝐲 − 𝐅(�̂�, 𝐛))𝐒ℇ
−1(𝐲 − 𝐅(�̂�, 𝐛))−1 + (�̂� − 𝐳a)𝐒𝑎

−1(�̂� − 𝐳a)−1 (1) 

where:  

y is the vector of measured radiances, 

F(�̂�, b) is the forward-model radiance, 

�̂� is the “full” state vector, described below,  

b contains additional variables needed (but not retrieved) and observational metadata (e.g., 

scan angle) for calculating radiances, 

Figure 4: Simplified flowchart for Step Two of JoSFRA retrieval. Notations refer to sections within this ATBD.  
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�̂� is the “retrieval” state vector, described below, 

𝐳𝑎 is the a priori retrieval state vector,  

𝐒ℇ
−1 is the inverse radiance noise covariance, and 

𝐒𝑎
−1 is the inverse covariance of the a priori 𝐳𝑎. 

 

(Note that we accent a retrieved quantity with a caret, e.g., �̂�, to distinguish it from the “true” 

quantity, z.)  

The measurement error covariance, 𝐒ℇ, contains the radiance noise error covariance from the 

instrument. It can also contain other random radiance error sources, such as those from forward 

model calculations, although these have not been included in this version. The a priori state 

vector, 𝐳𝑎, is also the first guess in a retrieval. The full state vector, �̂�, has as many elements for 

each retrieved profile constituent (Tatm, H2O, O3 and CO2) as there are layers in the forward 

model at or above ground, plus those for retrieved scalar quantities, surface temperature (Tsurf), 

cloud-top temperature (Tcldtop), cloud optical depth1 (cld) and effective cloud particle radius (reff), 

and, over land, surface emissivity (surf) at selected hinge frequencies. There are a maximum of 

100 layers filled in the forward model from the surface upwards, on its fixed pressure grid with 

level pressures from 1100 to 0.1 hPa (as described in Strow et al., 2003). The pressure layers are 

constructed as the log-mean of the upper and lower pressure levels:   

 𝑃𝑙𝑎𝑦𝑒𝑟 =
𝑃2−𝑃1

𝑙𝑛(𝑃2 𝑃1⁄ )
 (2) 

Following Bowman et al. (2006), the forward-model layer gridding must be fine enough for 

calculation of the observed radiance, but is usually much finer than the vertical resolution of a 

retrieved profile. The retrieval state vector, z, has a reduced number of layers, which varies by 

constituent, to reflect a lower vertical resolution. (A maximum 42 layers are retrieved for Tatm, 

28 for H2O, 10 for CO2 and 9 for O3.) These layers are listed in Table 1, however we note that 

the retrieval state vector, z, always includes the lowest complete forward model layer (that is, the 

lowest layer that does not contain the surface.) For “partial” layers where the surface pressure 

 

1The optical depth reported, (c), is that at 0.55 m. The optical depth, () at some wavenumber  can be deter- 

mined by the relationship () = (c) <Qext()>/2, where <Qext()> is the mean extinction efficiency for the spectral 

channel. Extinction efficiencies are from Baum et al. (2007) and their use in thermal infrared retrievals of cirrus 

parameters is in Ou et al. (2013).  
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falls between forward model pressure levels, the temperature and mixing ratio profiles are not 

retrieved, but are instead extrapolated by log pressure from the complete model layers above to 

the partial layer below.  

The retrieved state vector, �̂�, is mapped to the full state vector, �̂� when the forward model is 

called to calculate a radiance: 

 �̂� = 𝐌�̂�  (3) 

The matrix M performs a piecewise linear interpolation by log pressure from the lower number 

of layers in �̂� to the higher number of layers in �̂�.  

Tatm, Tsurf, and Tcldtop are linear quantities in the state vector. Logarithmic quantities for H2O, O3, 

CO2, cld, and reff are used in the state vector to ensure that their linear values always remain 

positive when input to the forward model during retrieval iterations. For land surface emissivity 

(surf), a variant of the logistic function (described below in Sec. 2.2.7) is used in order to restrict 

the forward model emissivity to be between 0 and 1. The state vector thus usually contains 

linear, logarithmic and (over land) logistic function elements. Description and determination of 

the different elements of the cost function are described in the sections below. 
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Table 1: Forward model layer pressures and retrieval pressures for constituents. 

 

 

Layer# 
(0 offset) 

Pressure 
(mb) 

Retrieval layer for … 

 

Layer# 
(0 offset) 

Pressure 
(mb) 

Retrieval layer for …  

0 0.009 Tatm H2O CO2 O3 
 

50 155.836 Tatm 
   

1 0.026 
     

51 165.241 
    

2 0.055 
     

52 175.001 Tatm H2O CO2 
 

3 0.104 
     

53 185.122 
    

4 0.177 
     

54 195.606 Tatm 
  

O3 

5 0.281 
     

55 206.459 
    

6 0.421 Tatm 
  

O3 
 

56 217.685 Tatm H2O 
  

7 0.604 
     

57 229.287 
    

8 0.838 
     

58 241.270 Tatm 
  

O3 

9 1.129 
     

59 253.637 
    

10 1.484 Tatm 
    

60 266.392 Tatm H2O 
  

11 1.910 
     

61 279.537 
    

12 2.416 
     

62 293.077 Tatm 
  

O3 

13 3.009 
     

63 307.014 
    

14 3.696 Tatm 
  

O3 
 

64 321.351 Tatm H2O CO2 
 

15 4.485 
     

65 336.091 
    

16 5.385 
     

66 351.236 Tatm 
  

O3 

17 6.402 
     

67 366.789 
    

18 7.545 Tatm 
    

68 382.751 Tatm H2O 
  

19 8.822 
     

69 399.126 
    

20 10.240 
     

70 415.914 Tatm 
  

O3 

21 11.807 
     

71 433.118 
    

22 13.532 Tatm 
 

CO2 O3 
 

72 450.738 Tatm H2O 
  

23 15.423 
     

73 468.777 
    

24 17.486 
     

74 487.236 Tatm 
  

O3 

25 19.730      75 506.115     

26 22.163 Tatm     76 525.416 Tatm H2O   

27 24.793      77 545.139     

28 27.626      78 565.285 Tatm  CO2  

29 30.671 Tatm H2O  O3  79 585.854     

30 33.934      80 606.847 Tatm H2O   

31 37.425      81 628.263     

32 41.148      82 650.104 Tatm   O3 

33 45.113      83 672.367     

34 49.326 Tatm   O3  84 695.053 Tatm H2O   

35 53.794      85 718.162     

36 58.524      86 741.693 Tatm H2O CO2  

37 63.523      87 765.645 Tatm H2O   

38 68.797      88 790.017 Tatm H2O   

39 74.353 Tatm H2O CO2 O3  89 814.807 Tatm H2O   

40 80.198      90 840.016 Tatm H2O  O3 

41 86.338      91 865.640 Tatm H2O   

42 92.778 Tatm     92 891.679 Tatm H2O CO2  

43 99.526      93 918.130 Tatm H2O   

44 106.586 Tatm H2O  O3  94 944.993 Tatm H2O   

45 113.965      95 972.264 Tatm H2O   

46 121.669 Tatm     96 999.942 Tatm H2O CO2  

47 129.703      97 1028.025 Tatm H2O   

48 138.071 Tatm H2O  O3  98 1056.510 Tatm H2O   

49 146.781      99 1085.394 Tatm H2O CO2 O3 
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2.2 A priori profiles, scalars and vectors 

2.2.1 Temperature profile, water vapor, surface temperature, and ozone 

Initial guess profiles for Tatm, H2O, Tsurf, and surface pressure (Psurf, the latter remaining fixed 

during the retrieval) are derived from NCEP forecast data, at 1° and 6-hour resolution, linearly 

interpolated in time and space to that of the observed footprint, with vertical profiles linearly 

interpolated by the logarithm of the retrieval pressure layering. (For consistency’s sake, we have 

kept the 1° and 6-hour resolution throughout the mission, despite higher forecast resolutions 

becoming available.) Above the vertical limit of NCEP forecasts, a climatology for temperature 

and water vapor derived from the Upper Atmosphere Research Satellite (UARS) was used, 

similar to that used for the AIRS V4 “cloud-cleared” retrieval (Barnet et al., 2007, Sec. 3.4). 

Initial O3 profiles are calculated from the climatology of McPeters et al. (2007).  

2.2.2 Carbon dioxide 

A priori CO2 profiles are calculated by formulae developed by G. C. Toon (personal 

communication), and are similar to those used by the Total Carbon Column Observing Network 

(Wunch et al., 2011). 

The reference CO2 volume mixing ratio is assumed to be 380 ppmv at the start of calendar year 

2005 with a 0.5% rate of yearly increase. Thus, for a given day in a given year, 

 CO2, ref = 0.000380 * (1. + R*(year + DOY/365.25 - 2005.)) (4) 

 where: 

 CO2,ref is the reference CO2, 

 R is the yearly fractional increase in CO2 abundance (0.005), 

DOY is the ordinal date (i.e., January 1 = 1, February 1 = 32, etc.), and 

year is calendar year. 

 

The planetary boundary layer pressure (in atmospheres) is calculated as 

 PPBL = 0.70 - 0.15 * cos(4 *  * lat/360)  

  - 0.1 * sin(2 *  * lat/360)   

 * sin(2 *  * (dayOfYear - 110)/365.25)) (5) 

 

with the result multiplied by 1013.25 to produce an answer in millibar. 
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The tropopause pressure is assumed from the latitude (in degrees), and varies from 90 hPa in the 

tropics to 280 hPa in the polar regions: 

Ptrop = 0.28 - 0.19 * exp(-((latitude - sslat)/35.)2) (6) 

with sslat being a seasonal modification to the “effective” latitude: 

sslat = 12 * sin(2.* * (DOY - 120)/365.25) (7) 

Again, the result is multiplied by 1013.25 to produce an answer in millibar. 

The age of the air (in years) is assumed at different regions of the atmosphere: 

 Apbl = age at the planetary boundary layer = 0.2 

 Atrop = age at the tropopause = 0.4 

 Atoa = age at the top of the model atmosphere = 5.5 

 

 if Player > PPBL (within the planetary boundary layer): 

 age = apbl * (Psurf - Player)/(Psurf - PPBL) (8) 

 else if Player > Ptrop and Player < PPBL (in free troposphere): 

 age = Apbl + (Atrop - Apbl) * (PPBL - Player) / (PPBL - Ptrop) (9) 

 else if Player <= Ptrop (in stratosphere or higher): 

 age = Atoa - (Atoa - Atrop) * sqrt(Player /Ptrop) (10) 

The intial volume mixing ratio of CO2 is set at a model layer: 

 vmr0 = CO2,ref * (1. - R * age)  (11) 

The fractional amplitude of the seasonal cycle at the surface is calculated as: 

fasc = 0.01 * sin(2. * lat * (1 - lat/720.) *  / 180.) * exp(lat / 45.) (12) 

A seasonal correction is applied depending on the day of the year and age of air: 

x = sin(2. *  * (dayOfYear + 75.)/365.2 - age)  

sdma = 1.45 - exp(-1.11*x)  (13) 

The a priori CO2 volume mixing at a model layer is finally calculated as: 

CO2 = vmr0 * (1 + fasc * exp(-age/0.25) * sdma) (14) 
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2.2.3 MODIS cloud a priori information and mapping to AIRS footprint 

For a priori data on cloud-top temperature (Tcldtop), cloud optical depth (cld) and effective cloud 

particle radius (reff) in each AIRS observation, weighted averages of MODIS Level 2 Tcldtop, 

cloud emissivity (cld) and (during daytime) reff data are made over the AIRS spatial response 

function (SpatialRF) using the algorithm of Wang et al. (2016). Cloud optical depth is calculated 

from the cloud emissivity (cld). (See Sect. 2.25 below.) A pre-computed average AIRS 

SpatialRF (using all AIRS channels) is used in weighting the MODIS pixels to the AIRS 

footprint (see Schreier et al., 2010, and Pagano et al., 2015); this average varies by AIRS scan 

angle and MODIS along-track and cross-track pixels. MODIS data from the MYD06_L2 (Aqua) 

product (with a horizontal resolution of about 1 km at nadir) are then mapped in the vicinity of 

the AIRS observation.  

Once the AIRS and MODIS footprints are co-located, MODIS retrieval fields for cloud-top 

temperature, cloud emissivity, and cloud effective radius are extracted and mapped (as data are 

available). Weighted averages and weighted standard deviations of the MODIS Tcldtop and reff are 

then calculated on the interpolated AIRS SpatialRF, excluding MODIS cloud-free pixels, while 

MODIS cloud emissivities are averaged where the data are greater or equal to zero. From the 

MODIS Cloud_Mask_1km field, we extract, map and similarly weight the cloud mask status 

(0 = undetermined, 1 = determined), cloud mask cloudiness (0 = confidently cloudy or fill if 

status flag = 0, 1 = probably cloudy, 2 = probably clear, 3 = confidently clear) and thin cirrus 

flags (0 = yes or fill if status flag = 0, 1 = no).  

Additionally, for each observed spectrum, we calculate “Cloud Phase Scores” as described by 

Kahn et al. (2014). The “Ice_cloud_total_score” and “Liquid_cloud_total_score” are calculated 

using brightness temperatures (Tb) of specific AIRS channels (see INSET 1). 
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2.2.4 Cloud-top temperature (Tcldtop) 

The weighted averages of the MODIS 

flags over the AIRS scene are 

combined with the Cloud Phase 

Scores, and are used to decide (a) if 

the scene is clear, (b) a cloud too thin 

for a confident MODIS retrieval of its 

cloud-top temperature is in the scene, 

but retrieval by AIRS should be 

attempted using an assumed cloud-top 

temperature a priori, or (c) retrieval in 

a cloudy scene will be attempted using 

the averaged MODIS cloud data as a 

priori. We categorize AIRS scenes as: 

 (1) Clear, 

(2) Cloudy of known MODIS 

temperature,  

(3) Thin cirrus of unknown 

MODIS temperature,  

(4) Liquid cloud of unknown 

MODIS temperature,  

(5) Mixed-phase of unknown MODIS temperature, or  

(6) Default cloud of unknown MODIS temperature, 

and set a priori cloud data accordingly. We describe the criteria for these bins in turn, and the 

cloud-top temperature a priori selected for them. 

Set: 

 

 Tb,930 = mean(Tb @ 930.07 cm-1, Tb @ 930.44 cm-1,  

  Tb @ 930.81 cm-1) 

 Tb,960 = mean(Tb @ 960.27 cm-1, Tb @ 0960.66 cm-1) 

 Tb,1227 = mean(Tb @ 1227.1910 cm-1,  

  Tb @ 1227.71 cm-1) 

 Tb,1290 = mean(Tb @ 1231.33 cm-1, Tb @ 1231.85 cm-1) 

 

where Tb is the brightness temperature (in K). 

  

(Ice cloud tests) 

 

Set Ice_cloud_total_score = 0 

 

if Tb,960 < 235.0 K: 

 Ice_cloud_total_score += 1 

if (Tb,1231 – Tb,960) > 0 K: 

 Ice_cloud_total_score += 1 

if (Tb,1231 – Tb,930) > 1.75 K: 

 Ice_cloud_total_score += 1 

if (Tb,1227 – Tb,960) > -0.5 K: 

 Ice_cloud_total_score += 1 

 

(Liquid cloud tests) 

 

Set Liquid_cloud_total_score = 0 

 

if (Tb,1231 – Tb,960) < -1 K: 

 Liquid_cloud_total_score −= 1   

if (Tb_1231 - Tb_930) < -0.6 K: 

 Liquid_cloud_total_score −= 1 

 

INSET 1: Procedure for determining cloud phase scores. The 

wavenumbers shown are approximate as the centroid of the 

channel frequency response, and can change with shifting by the 

AIRS focal plane during the course of the mission. 
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2.2.4.1 Clear 

An AIRS scene is treated as clear if  

(a) the average for the Cloud Mask Status Flag is greater than 0.95, and 

(b) the average Cloud Mask Cloudiness is greater than 2.8, and 

(c) Ice_cloud_total_score and Liquid_cloud_total_score are both zero, and  

(d) (during daytime) the average Thin Cirrus Flag is greater than 0.95. 

In this case, no cloud information is in the retrieval or full state vector, and the retrieval 

algorithm goes directly to retrieve Tatm, Tsurf, H2O, O3, CO2 and (over land) emissivity 

2.2.4.2 Cloudy of known MODIS temperature 

A scene is treated as cloudy (ice or water cloud) if the weighted average of the MODIS cloud-top 

temperature on the AIRS footprint can be calculated.  The result is used as the a priori Tcldtop.   

2.2.4.3 Thin cirrus of unknown MODIS temperature 

A scene is considered to have thin cirrus but of unknown temperature if  

(a) the cloud-top temperature cannot be calculated because of missing MODIS values, 

and 

(b) the Ice_cloud_total_score > 0, and  

(c) the Liquid_cloud_total_score = 0. 

OR 

(a) the solar zenith angle is below 85° (daytime), and 

(b) the Ice_cloud_total_score = 0, and 

(c) the Liquid_cloud_total_score = 0, and 

(d) the averaged MODIS thin cirrus flag < 0.9. 
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In this case, we assume a default a priori Tcldtop of 230K, except if this is within 10K of the a 

priori surface temperature. If the latter is true, then the a priori cloud-top temperature is set to the 

a priori surface temperature minus 10K. 

2.2.4.4 Liquid cloud of unknown MODIS temperature 

A scene is considered to have a liquid cloud but of unknown temperature if  

(a) the cloud-top temperature cannot be calculated because of missing MODIS values, 

and 

(b) the Ice_cloud_total_score = 0, and  

(c) the Liquid_cloud_total_score  < 0. 

In this case, we assume a default a priori Tcldtop of 280K, except if this is within 10K of the a 

priori surface temperature, in which case the a priori cloud-top temperature is set to the a priori 

surface temperature minus 10K. 

2.2.4.5 Mixed-phase cloud of unknown MODIS temperature 

A scene is considered to have a mixed-phase cloud but of unknown temperature if  

(a) the cloud-top temperature cannot be calculated because of missing MODIS values, 

and 

(b) the Ice_cloud_total_score > 0, and  

(c) the Liquid_cloud_total_score < 0. 

In this case, we assume a default a priori Tcldtop of 270K, except if this is within 10K of the a 

priori surface temperature, in which case the a priori cloud-top temperature is set to the a priori 

surface temperature minus 10K. 

2.2.4.6 Default cloud of unknown MODIS temperature 

A scene is considered to have a cloud of unknown phase and temperature if 

(a) the cloud-top temperature cannot be calculated because of missing MODIS values, 

and 
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(b) the Ice_cloud_total_score is 0, and  

(c) the Liquid_cloud_total_score is 0, and 

(d) the scene does not pass either the “Clear” criteria (Sec. 2.2.4.1) or the “Thin cirrus of 

unknown temperature” (Sec. 2.2.4.3) as described above.  

In this case, we assume a default a priori Tcldtop of 240K, except if this is within 10K of the a 

priori surface temperature, in which case the a priori cloud-top temperature is set to the a priori 

surface temperature minus 10K. 

2.2.5 Cloud optical depth (cld) 

If the scene is not clear as determined by the test described in Sec 2.2.4.1 above, then the a priori 

cloud optical depth is calculated from an averaged MODIS cloud emissivity (cld). 

cld  = -2. * ln(1. - cld)   (15) 

If cld is less than 0.01, it is reset to 0.01. If cld is greater than 0.99, it is reset to 0.99. We note 

that in this formulation, the a priori cld cannot be less than 0.02 nor greater than 9.21. If the 

averaged MODIS cloud emissivity cannot be calculated because of missing values, then cld is 

assumed to be 0.05, giving an a priori cld of 0.12.  

2.2.6 Cloud effective particle radius (reff) 

If the weighted average of the MODIS reff can be calculated, it is used as the a priori. If the 

average cannot be calculated, or if it is nightime, the default reff is 40 m. Lookup tables for 

cloud absorption and scattering parameters have particle radii ranging from 5 to 85 m; reported 

cloud absorption and scattering parameters outside this range rely on extrapolated parameters, 

and results may not be reliable. 

2.2.7 Land emissivity (surf) 

For ocean emissivity, we use the National Center for Environmental Prediction – Environmental 

Modeling Center (NCEP/EMC) Infrared Sea Surface Emissivity (IRSSE) formulae and 

coefficients (van Delst, 2003), calculated for channel frequency, view angle and wind speed, 

with the latter estimated from the NCEP forecast (described above). Channel-dependent ocean 

emissivities are input as fixed parameters, and are not retrieved or modified. 



 23 

 

Over land or mixed land-ocean surfaces, emissivity is from the Cooperative Institute for 

Meteorological Satellite Studies, University of Wisconsin - Madison Global Infrared Land 

Surface Emissivity Database (Seemann et al., 2008). These are monthly maps of land emissivity 

at 10 wavelengths from 3.6 to 14.3 m, gridded spatially by 0.05°. Emissivities are spatially 

interpolated to the center of the coincident AIRS footprint. If missing values are in the emissivity 

database at locations used for interpolation to the center of the AIRS footprint, they are assumed 

to be ocean, with ocean emissivities calculated as above. Emissivities for each AIRS retrieval 

channel are then calculated by interpolation by wavelength. As the emissivity database does not 

extend prior to calendar year 2003 or past 2014, we use a data set averaged on a month-by-month 

basis for those years where specific data are unavailable. 

 

We do not retrieve land emissivities in linear space since it’s possible that the optimal estimation 

algorithm could crash the forward model by testing emissivities less than zero or greater than 

unity. To avoid this, we use a variant of the logistic function to restrict the emissivity to be 

between 0 and 1:  

 𝜀𝑠𝑢𝑟𝑓 =  
𝐿

1+exp (−𝑘[𝜉−𝜉∗])
 (16) 

The emissivity is converted to logistic space by inverting Eq. 16. We select L = 1, k = 1 and 

𝜉∗ = 5. Thus, the “logistic parameter” function becomes: 

 𝜉 = 5 − 𝑙𝑛 (
1

𝜀𝑠𝑢𝑟𝑓
− 1) (17) 

Within the retrieval, we solve for 𝜉, converting back to 𝜀𝑠𝑢𝑟𝑓 via Eq. 16 when emissivity is input 

into the forward model. The value for 𝜉 is initialized from the a priori 𝜀𝑠𝑢𝑟𝑓.  

Within the spectral range of the JoSFRA retrieval, we retrieve emissivities using hinge points at 

699.3, 826.4, 925.9., 1075.2, 1204.8, and 1315.7 cm-1, with interpolations by wavelength (not 

frequency) for use within the forward model between the 699.3 and 1315.7 cm-1 endpoints. 

Outside this range, endpoints are used. (That is, for frequencies less than 699.3 cm-1, the 

emissivity at 699.3 cm-1 is used, while the emissivity at 1315.7 cm-1 is used at frequencies 

greater than 1315.7 cm-1.) Note that the retrieval need not use AIRS channels corresponding to 
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the hinge points; the hinge point frequencies are just a basis on which to interpolate the 

emissivity to the retrieval channels. 

2.3 A priori and measurement covariances 

2.3.1 A priori covariances 

A priori covariances (Sa in Eq. 1) are listed in Table 2. The covariances are ad hoc, but guided by 

previous experience with AIRS and TES retrievals. We recommend caution in applying resultant 

errors, although they may still be useful in comparing results between retrievals. Note that H2O, 

O3, CO2, cld and reff are retrieved as loge quantities, and the covariances of their logarithms are 

used. 

A relaxed covariance for Tatm is used at the lowest forward model pressures (≲ 50 hPa) since the 

vertical extrapolation from the NCEP forecast can produce significant temperature bias under the 

extremely cold conditions sometimes seen in the polar upper stratosphere or lower mesosphere. 

A (2K)2 a priori covariance can be too constraining to allow a good spectral fit for the retrieval, 

so the covariance increases from (2K)2 at 50 hPa to (15K)2 at 10 hPa and above. 

As noted, emissivity over land is not retrieved in linear space. Instead, the logistic parameter 𝜉 is 

retrieved from which the emissivity is calculated (Eq. 16). The a priori covariance for 𝜉 was 

n/a = not applicable. 

Table 2: A priori covariances and off-diagonal length scale.  
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derived at each grid point and hinge frequency by calculating the monthly average and 

covariance (across hinge frequencies) of 𝜉 from 2003 through 2014 using the Seemann et al. 

(2008) data. From these data, the variance of 𝜉 at a hinge frequency at the AIRS observation is 

interpolated if possible. If a variance is not available, a value of 0.26 is assumed. Only the 

diagonal of the 𝜉 covariance matrix is used; no off-diagonal components (e.g., across different 

hinge points) are used. 

For temperature and gas retrievals, off-diagonal elements of the covariance matrices are created 

using assumed length scales:  

 𝜎𝑖𝑗
2 = 𝜎𝑖𝜎𝑗exp (−

|𝑧𝑖−𝑧𝑗|

𝑙
) (18) 

where: 

 𝜎𝑖𝑗
2  is the off-diagonal covariance for layers i and j, 

 𝜎𝑖 , 𝜎𝑗 are the square roots of the on-diagonal covariances, 

 zi, zj are the estimated altitudes, and 

 l is the assumed length scale. 

 

The off-diagonal length scale for temperature and water vapor was kept low (0.5 km) as this 

tended to reduce unrealistic retrievals at layers below thick clouds from adversely affecting 

retrievals above clouds. (This is discussed further in Sect. 2.4 below.) Covariance matrices are 

calculated individually for each constituent and then “stacked” into a larger matrix for use in the 

simultaneous retrieval. At present, we are not using covariances between constituents (say, 

between temperature and water vapor.) 

2.3.2 Note on cloud-top temperature a priori covariance 

After routine processing began, a programming error was discovered in that an incorrect a priori 

covariance for the cloud-top temperature (Tcldtop) was used when the cloud-top temperature a 

priori was assumed and not derived from MODIS (see Sec. 2.2.4).  In these cases, the a priori 

covariance for a MODIS-derived cloud-top temperature, (4K)2, was erroneously used when a 

covariance of (25K)2 should instead have been used. The resulting Tcldtop retrieval in cases where 

the a priori Tcldtop was assumed may thus be overly-close to the first guess, and is likely to have 

an underestimated error. This will be corrected in future versions of JoSFRA. The full effect of 
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this error needs to be evaluated, however, we anticipate such cases tend to occur under low cloud 

opacity, and this is not expected to significantly affect retrievals of other parameters. 

2.3.3 Measurement error covariance 

Measurement error covariance (𝐒ℇ in Eq. 1) is taken directly from the radiometric noise reported 

in the AIRS Level 1b product (see Pagano et al., 2003). This is reported channel-by-channel, 

without correlations between them. For this study, 𝐒ℇ is a diagonal matrix, and we have assumed 

the noise to be uncorrelated across channels, Gaussian, and not scene-dependent. A study by 

Tobin et al. (2007), using Principal Component Analysis on AIRS radiance data, showed the 

contribution from correlated error can be significant depending on the detector array on the AIRS 

focal plane. (See also Pagano, 2002.) Channel radiance error can be dependent on the channel 

radiance in the shortwave above ~2200 cm-1, but these channels are not used in this study. Only a 

minor dependence of the radiance error on channel radiance is observed in the midwave (~1200 

to 1700 cm-1) and there is effectively no dependence for channels below ~1200 cm–1. Individual 

channels sometimes exhibit non-Gaussian “popping”, that is, a transitory step change in the 

signal noted during the instrument’s deep space and on-board calibration views (see Weiler et al., 

2005). These channels are excluded from analysis of an observation.  

Random errors in the calculated radiances from the forward model (briefly described below in 

Sec. 2.4) are not added into the measurement error covariance as used in this algorithm. The 

random errors from the “non-cloudy” part of forward model may be smaller than the noise error 

from the AIRS instrument for most channels (see, for example, Fig. 2 in DeSouza-Machado et 

al., 2018), but significant random error may be introduced from the calculation of the cloud 

absorption and emission. 

2.4 Forward model 

The forward model is the Standalone AIRS Radiative Transfer Algorithm (SARTA) (Strow et 

al., 2003; 2006), supplemented with a delta-four-stream (D4S) calculation for cloud 

transmissivity (Ou et al., 2013). For ice clouds, scattering parameters are from Baum et al. 

(2007). For water clouds, we use Mie scattering parameters calculated using formulae from 

Mishchenko et al. (2002). Only cirrus parameters are used at cloud-top temperatures (Tcldtop) 
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below 253.15 K, while only Mie cloud parameters are used at temperatures above 273.15 K. 

Between these temperatures, we use a sliding weight between Mie and cirrus-derived cloud.  

Within the SARTA+D4S 

forward model, SARTA 

calculates the cloud-free gaseous 

transmissivities for each pressure 

layer and retrieval channel given 

the temperature and gas profiles, 

emissivity, scan angle, etc. The 

D4S code calculates the cloud 

transmissivities for retrieval 

channels given a cloud-top 

temperature, optical depth and particle size. To find the correct model layer in which to put the 

cloud, the code tests the layer temperatures downwards from ~100mb until it finds a layer where 

the temperature is greater or equal to the cloud-top temperature. Given the cloud-top 

temperature, the cloud-top pressure is then calculated by linear interpolation of the natural 

logarithm of the layer pressures with the layer temperatures. The cloud layer is determined where 

the cloud-top pressure is between forward model level pressures. (See Fig. 5.) Each pressure 

layer in the forward model is assumed homogeneous for gases, however, the “cloudy” layer is 

subdivided into clear and cloudy sublayers. The fraction of a (full) layer that is cloudy (f) is 

effectively determined as the weight fraction of the gas in the cloudy part of the layer. (Note that 

the layer indices are ordered downward from the top of the atmosphere): 

𝑓 =  
𝑃𝑐𝑙𝑜𝑢𝑑𝑡𝑜𝑝−𝑃𝑙𝑒𝑣,𝑖

𝑃𝑙𝑒𝑣,𝑖+1−𝑃𝑙𝑒𝑣,𝑖
  (19) 

The optical depth of the gases in the cloudy layer is fractionally divided between the clear and 

cloudy sublayers, with the (channel specific) optical depth of the cloud (calculated from the 

transmissivity) added to the gas optical depth of the cloudy sublayer. Here, the upwelling and 

downwelling radiance calculation is also calculated at the cloud-top pressure, in addition to the 

normal calculation at layer pressure boundaries. 

Figure 5: Schematic of forward model clear and cloudy layers. P 

is pressure, T is temperature, and f is the fraction of a model layer 

that is cloudy. Layer numbers are indexed from top-of-

atmosphere downwards. Note that ODcloud is the infrared optical 

depth of the cloud specific to an AIRS channel frequency, and is 

not the visible optical depth reported in the retrieval output. 
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Note that this models the cloud as “fitting” in one forward-model sublayer, no matter how thick 

the cloud. Indeed, the cloud becomes infinitely thin if a cloud-top pressure falls exactly on a 

level pressure (but the cloud transmittance is still used in calculating the outgoing radiance.) This 

forward modelling of temperature, trace gases and cloud properties, while computationally fast, 

is best suited for optically and geometrically thin clouds, and may not be well suited for thick 

clouds, or where significant cloud formations occupy different heights within an AIRS pixel. 

These scenes often, but not always produce retrievals with poor spectral fits (described below in 

Sec. 2.7.4) and are filtered out in quality control. “Distribution” of a cloud transmissivity over 

several model layers will be investigated and perhaps incorporated into future versions of 

JoSFRA. 

2.5 Retrieval channels 

Table 3 lists the spectral channels used in JoSFRA retrievals. Only longwave channels were used 

(< 1650 cm-1). We found that using channels in the shortwave region of the AIRS bandpass 

would often result in retrievals not converging, or producing unrealistic retrieval quantities.  

2.6 Retrieval by minimization of cost function 

After setting the different elements of the cost function (Eq. 1) as described above, the retrieval 

is performed by iteratively minimizing the cost function by modifying the retrieval state vector 

�̂� with a combination Gauss-Newton/Levenberg-Marquardt solver. Formulae are described by 

Bowman et al. (2006), applying the algorithm of Moré (1977). (See also Sarkissian, 2001.)  

A simultaneous retrieval of cld, Tcldtop, reff, Tsurf, Tatm, H2O, O3, CO2 and (over land) surf is made.  

Convergence tests are as described in Sect. IV.B(2) of Bowman et al. (2006), setting the 

threshold value (“”) of 0.2. If a given retrieval cannot converge within a specified number of 

iterations, or both the level 2 norm of the trust region (“” in Moré, 1997) and linearity measure 

(“”) within the Levenberg-Marquardt solver fall below 10-3, the algorithm is stopped and 
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flagged as non-convergent. Converged retrievals are analysed for information content and 

quality-control (QC) checked as described below. 

 

Table 3: AIRS channels and approximate frequencies for Step One and Step Two Retrievals. 

Step One Channels 

Channel 

(zero 

offset) 

Approx. 

Frequency 

(cm-1) 

Channel 

(zero 

offset) 

Approx. 

Frequency 

(cm-1) 

Channel 

(zero 

offset) 

Approx. 

Frequency 

(cm-1) 

Channel 

(zero 

offset) 

Approx. 

Frequency 

(cm-1) 

51 662.02 154 694.12 240 718.58 432 779.11 

61 664.51 155 694.40 241 718.87 444 790.33 

68 666.26 156 694.67 242 719.17 454 793.89 

70 666.77 160 695.77 243 719.46 468 798.92 

72 667.27 161 696.05 244 719.76 474 801.10 

74 667.78 166 697.43 248 720.94 481 803.65 

76 668.28 167 697.71 250 721.54 484 804.75 

77 668.54 171 698.82 251 721.83 503 811.79 

78 668.79 172 699.10 255 723.03 527 820.84 

79 669.04 173 699.38 256 723.32 576 839.92 

81 669.55 174 699.66 260 724.52 594 847.14 

82 669.81 178 700.77 266 726.32 600 849.57 

83 670.06 179 701.05 294 734.15 699 880.40 

85 670.57 185 702.74 308 738.48 786 917.30 

91 672.10 189 703.87 313 740.03 842 937.90 

97 673.64 191 704.43 332 746.01 1240 1125.27 

103 675.19 197 706.13 337 747.60 1241 1125.81 

109 676.75 200 706.99 342 749.20 1242 1126.35 

110 677.01 203 707.84 346 750.48 1243 1126.89 

115 678.31 206 708.70 351 752.09 1244 1127.42 

116 678.57 209 709.56 355 753.38 1245 1127.96 

127 681.46 214 711.00 356 753.70 1246 1128.50 

128 681.72 215 711.29 360 755.00 1247 1129.04 

137 689.49 220 712.74 361 755.32 1248 1129.58 

138 689.76 225 714.19 370 758.26 1249 1130.12 

143 691.12 226 714.48 405 769.89 1250 1130.66 

144 691.39 231 715.94 415 773.28 1290 1231.33 

149 692.75 238 717.99 424 776.36 1291 1231.85 

150 693.02 239 718.28 429 778.08 1292 1232.37 

Step Two Channels 

Channel 

(zero 

offset) 

Approx. 

Frequency 

(cm-1) 

Channel 

(zero 

offset) 

Approx. 

Frequency 

(cm-1) 

Channel 

(zero 

offset) 

Approx. 

Frequency 

(cm-1) 

Channel 

(zero 

offset) 

Approx. 

Frequency 

(cm-1) 

402 768.88 1265 1218.49 1592 1407.77 1739 1513.83 

405 769.89 1278 1225.13 1626 1427.22 1744 1517.10 

459 795.68 1413 1310.18 1635 1432.47 1769 1547.20 

493 808.07 1422 1315.47 1651 1441.88 1775 1551.30 

509 814.03 1518 1367.25 1657 1462.09 1805 1572.09 

538 825.05 1536 1376.88 1668 1468.82 1825 1586.26 

545 827.75 1544 1381.21 1685 1479.36 1834 1592.72 

869 948.18 1550 1384.47 1692 1483.74 1842 1598.50 

1232 1121.00 1564 1392.15 1707 1493.21 1851 1605.05 

1259 1135.55 1573 1397.13 1721 1502.16 
  

 



 30 

2.7 Information content and error estimation 

2.7.1 Averaging kernels 

Averaging kernels (see Chapter 2.4 in Rodgers, 2000) are internally calculated within JoSFRA, 

but are not routinely output. We assume that the retrieval is nearly linear in the vicinity of the 

solutions. The Jacobian is defined as the matrix of derivatives of the outgoing radiance to 

changes in each element of the state vector,  

 𝐊z =
∂F(x̂, b)

∂z
=

𝜕𝐅(𝐌�̂�,𝐛)

𝜕𝐳
 (20) 

and is calculated by finite difference for each retrieval iteration. The gain, 𝐆𝑧, is a measure of the 

sensitivity of the retrieval, �̂�, to changes in the radiance: 

 𝐆𝑧 =
𝜕�̂�

𝜕𝐅
= (𝐊𝑧

𝑇𝐒𝜀
−1𝐊𝑧 + 𝐒𝑎

−1)−1𝐊𝑧
𝑇𝐒𝜀

−1 (21) 

The gain is multiplied by the Jacobian to produce the averaging kernel matrix, A, which is a 

measure of the sensitivity of the retrieval vector, �̂�, to changes in the true state, z: 

 𝐀 =
𝜕�̂�

𝜕𝐳
=  

𝜕�̂�

𝜕𝐅

𝜕𝐅

𝜕𝐳
= (𝐊𝑧

𝑇𝐒𝜖
−1𝐊𝑧 + 𝐒𝑎

−1)−1𝐊𝑧
𝑇𝐒𝜖

−1𝐊𝑧 (22) 

This is a square matrix dimensioned n × n, where n is the number of elements of the state vector, 

and as described below, is useful in calculating the error covariance of the retrieval. Each 

element of the averaging kernel matrix is a measure of the sensitivity for one retrieved member 

of a state vector (ẑ𝑖) to the changes in the true value of that member (z𝑖), or to the true value of a 

different member (z𝑗). That is, 

 A𝑖,𝑗 =
𝜕ẑ𝑖

𝜕z𝑗
   (23) 

Note for an AIRS retrieval, an averaging kernel is scene dependent. Sensitivities at different 

layers depend on the amounts of trace gases present, the temperature lapse rate, the particulars of 

the cloud field, the view angle, and the spectral channels employed. Since the JoSFRA (Step 

One) retrievals are simultaneous and not sequential, the averaging kernel describes dependencies 

within and between retrievals of different constituents, and can be used to more robustly 

calculate uncertainties as described below.   
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While the full averaging kernels are not routinely output, the averaging kernel (Eq. 22) itself is 

subset for individual retrieval constituents, and the traces of these submatrices are output as 

Degrees of Freedom of Signal (DOFS.) The DOFS is a measure of the number of independent 

pieces of information retrieved from the measurement of a constituent.  This is more fully 

described in Sec 2.4.2 of Rodgers, 2000, but we note here that the DOFS for surface temperature 

is used in quality control for retrievals in cloudy conditions (Sec 2.8 below.) 

2.7.2 Error estimation 

The smoothing error covariance measures the uncertainty in the fine structure of the retrieval due 

to the measurement’s limited vertical resolution. However, as we have an averaging kernel from 

a joint retrieval, the smoothing error also indicates how the uncertainty in one retrieved 

constituent affects the uncertainty in another:  

 𝐒𝑠 = (𝐀 − 𝐈n)𝐒𝑎(𝐀 − 𝐈n)𝑇 (24) 

(See Sect. V(B) of Bowman et al., 2006, and Sections 3.4 and 4.1 of Rodgers, 2000.)   

The retrieval noise error covariance calculates the impact of the radiance noise on the retrieval: 

 𝐒m = 𝐆𝑧𝐒ε𝐆𝑧
𝑇   (25) 

With substitutions, these terms can be added to provide the covariance of the maximum a 

posteriori solution: 

 �̂� = (𝐊𝑧
𝑇𝐒𝜀

−1𝐊𝑧 + 𝐒𝑎
−1)−1 (26) 

with the square roots of the diagonal reported as errors for the state vector. Note also that the 

total retrieval error does not include any systematic errors from the forward model (e.g., those 

due to instrumental lineshape errors, spectral biases or other errors that are correlated across 

observations), although we note the SARTA model is “tuned” to better match outgoing radiances 

as calculated from coincident measurements and analyses (see Strow et al., 2006). We again 

emphasize that since our a priori covariances are ad hoc, caution should be observed in using the 

reported errors. 
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The model parameter error contains the uncertainty from parameters affecting the retrieval, but 

are not retrieved themselves (e.g., surface pressure, ocean emissivity, scan angle, etc.):  

 𝐒mp = 𝐆z𝐊Psurf𝐒a,Psurf(𝐆z𝐊Psurf)
𝑇 + ⋯  (27) 

For this version of JoSFRA, model parameter error is calculated for Step One using an assumed 

covariance for Psurf only, but for the Step Two H2O retrieval, the model parameter error is 

calculated using a priori covariances for Psurf, Tatm, CO2, Tcld, cld and rcld, but not O3 or surf over 

land or water. Using a priori covariances likely results in an overestimate of the model parameter 

error. Future versions will use a posteriori covariances and will include O3 or surf. 

For Step One or Step Two, total retrieval error covariance would be the sum of Eqs. 26 and 27: 

 𝐒tot = �̂� + 𝐒mp  (28) 

Refinement of the model parameter error calculation (Eq. 27) is planned for future development.  

For constituents retrieved in logarithmic space, the error reported for the i’th element, 𝜖𝑖, is the 

error in the logarithm of the retrieved value, �̂�𝑖, with the range [lower, upper] of the retrieval in 

linear space being:   

 [exp(�̂�𝑖 − 𝜖𝑖), exp(�̂�𝑖 + 𝜖𝑖)] (29) 

For errors in the land emissivity (retrieved in logistic space), we apply a simple error calculation 

heuristic: 

 [𝑑𝑓(𝑥)]2 ≈ [
𝑑𝑓

𝑑𝑥
]

2
[𝑑𝑥]2 (30) 

Setting f to Eq. 16, x to the logistic parameter 𝜉, dx to the square root of the a posteriori 

covariance of 𝜉, and making the appropriate substitutions, the emissivity error in the retrieved 

hinge is calculated as: 

 𝐸𝑟𝑟𝑜𝑟(𝜀𝑠𝑢𝑟𝑓) ≈  
exp(5−𝜉)

[1+exp(5−𝜉)]2 ×  𝑒𝑟𝑟𝑜𝑟(𝜉)  (31) 
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2.7.3 Chi Square Fitting Parameter 

The chi square fitting parameter, 𝜒2, is a goodness-of-fit statistic of how well a spectrum’s 

radiance is fitted within the bounds of the radiance error:  

 𝜒2 =
1

N
∑ (

𝐲𝑖− [𝐅(𝐱,𝐛)]𝑖

𝜀𝑖
)

2
N
𝑖=1          (32) 

where N is the number of channels, and 𝜀𝑖 is the radiance error in channel i. A 𝜒2 ≫ 1 indicates 

a poor spectral fit to the observed radiance. While the 𝜒2 does not directly enter into the error 

characterization, it is used in quality control as described below. 

2.8 Quality control (QC) filtering 

There are separate quality control flags for Step One retrievals (Tatm, CO2, O3, Tsurf, Tcldtop, cld, 

reff, and surf) and Step Two retrievals (H2O). Flags are 0 (good from top-of-atmosphere to 

surface), 1 (good from top-of-atmosphere to QCpres, described below), 2 (do not use), and 3 

(retrieval failure). We describe the criteria for these in reverse order. 

2.8.1  QC = 3 (retrieval failure) 

Retrievals that encounter an unrecoverable error in the solver (e.g., attempted inversion of a 

singular matrix) or elsewhere in the algorithm are given a QC flag = 3 (retrieval failure). No 

retrieval results or a priori data are written out, although future versions of JoSFRA will write 

out a priori data. 

2.8.2  QC = 2 (do not use) 

Retrievals with either or both of the following are output with QC = 2 (Do Not Use): 

1. Normal convergence is not obtained within the maximum specified number of iterations 

(currently 60), or 

2. Chi square fitting parameter, 𝜒2 > 3.  

The first criterion is to avoid waste of computational resources on poorly- or non-converging 

retrievals. The second criterion is to avoid reporting profiles with poor spectral fits. This often 
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happens under ice cloud conditions when the cloud optical depth is high (≳ 20); it’s likely that 

the radiative transfer is incorrectly calculated because a cloud is assumed to “fit” in one vertical 

model layer while in reality, thick clouds extend over many model layers. Poor spectral fits can 

also often occur when there was a high standard deviation, ≳ 20K, of the MODIS 1 km cloud-

top temperature weighted over the AIRS spatial response function. Again, we suspect that this 

poor fitting is from limitations in our forward model which is limited to one cloud layer; the 

radiative transfer calculation can be inadequate when there were several cloud tops at different 

temperatures within the AIRS footprint.  

For the users who would prefer to use their own 𝜒2 criterion in analyzing JoSFRA output, note 

that the retrieval 𝜒2’s are given in “chi2_step_one” and “chi2_step_two” in the output. 

Retrievals that have converged normally (regardless of the 𝜒2) will have 

“/aux/stop_code_step_one” and/or “/aux/stop_code_step_two” equal to 1. Retrievals that reach 

the maximum allowable number of iterations will have “/aux/stop_code_step_one” and/or 

“/aux/stop_code_step_two” equal to 2. 

2.8.3 QC = 1 (good from top-of-atmosphere to QCpres) 

This QC flag indicates when retrieval profiles are considered good to just above the cloud-top, 

but are not reliable below. To summarize, retrievals in layers with Tatm > (Tcldtop – 10 K) require a 

surface temperature averaging kernel > 0.6; QCpres is calculated where Tatm = Tcldtop – 10 K. 

This is a means to flag layers of a profile that may have unphysical values of the retrieval 

temperature and/or water vapor below a cloud top.  

We again note that a cloud’s transmissivity is incorporated in only one layer of the forward 

model vertical pressure grid, no matter how thick the cloud. We hypothesize that this can lead to 

erroneous outgoing radiances for temperature and water vapor channels in regions at or below 

moderately thick clouds, which in turn, produces erroneous Jacobians and averaging kernels. 

Surface temperature retrievals appear to more correctly give a low-to-zero averaging kernel 

under moderate-to-thick cloud optical depths. We therefore require that retrievals at layers below 

clouds must “see” the surface (determined by the Tsurf averaging kernel having a minimum of 

0.6). For retrievals above clouds where the surface temperature averaging kernel is less than 0.6, 

an additional thermal contrast provided by a 10 K buffer between the cloud top and the lowest 
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profile layer to pass quality control eliminates more unphysical retrievals. (The 10K buffer was 

selected by visual inspection of test retrievals, but its size may be revisited in future versions.) 

Most, but not all of the retrievals that produce unphysically high relative humidities are 

eliminated by this method, usually in the boundary layer. 

2.8.3  QC = 0 (good from top-of-atmosphere to surface) 

If a retrieval (a) converges within the specified maximum number of iterations, (b) has a retrieval 

2 ≤ 3, and (c) has a surface temperature averaging kernel > 0.6, then the retrieval is considered 

“good” from top-of-atmosphere to the surface. (In this case, QCpres is reported as the surface 

pressure). 

Note that it is possible that if the Step One QC flag is 0 or 1, the Step Two QC flag can be 2 

(non-convergence or 2 > 3) or 3 (retrieval failure). This can happen if the Step Two water vapor 

retrieval is unsuccessful after a successful Step One retrieval. Note that the QCpres determined 

in Step One is also used for the Step Two H2O retrieval profile. 

2.9 Calculation of Relative Humidity and Error 

In calculating relative humidity (RH), we use the layer retrievals of temperature and water vapor. 

Eqs. (2.5) and (2.21) of Wagner and Pruß (2002) are used to determine saturation pressures of 

water vapor over liquid and ice. At temperatures between 253.15 and 273.15K, we set saturation 

pressure as a sliding-scale weighted average of those over ice and over water. The relative 

humidity error calculation uses recalculated RHs adding the errors from the temperature and 

(separately) the positive, linear value of the water vapor error (the right-hand side of Eq. 29). We 

report the relative humidity uncertainty as the root-sum-of-squares of the differences between 

these re-calculated relative humidities and the reported values. 
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