DRAFT / SSAI

November 1, 2002

DRAFT

This is a work-in-progress document describing the access of level 0, level 1, and level 2 data from the High Resolution Doppler Imager (HRDI) instrument, which is part of a complement of instruments on the Upper Atmosphere Research Satellite (UARS). HRDI primarily measures winds and temperature in the earth’s stratosphere and mesosphere. Originally, the data were (are) generated for computer systems compatible with the Compaq (Digital Equipment) Computer Corporation VAX/Alpha computers running under the VMS operating system. The following describes those data that are converted to be compatible with Silicon Graphics Incorporated (SGI) computer systems running under IRIX, and therefore also with the facilities of the GSFC Distributed Active Archive Center (DAAC). The following also describes software for the access of the converted data files.

SSAI

41.0 Introduction.

1.1 Data Products and File Names.
4
1.1.1 Level 0 Data Products and File Names
4
1.1.2 Level 1 Data Products and File Names
5
1.1.3 Level 2 Data Products and File Names
5
1.2 Software Products and File Names.
6
1.2.1. Level 0 Software
6
1.2.2 Level 1 Software
6
1.2.3 Level 2 Software
7
1.3 Additional Software
7
1.3.1 Additional level 0 Software
8
1.3.2 Additional Level 1 software
8
1.3.2 Additional Level 2 software
8
2.0 Related Documentation
9
3.0 HRDI Files and Data Structure
10
3.1 HRDI Level 0 Files and Data Structures
10
3.2 HRDI Level 1 Files and Data Structure
10
3.3 HRDI Level 2 Files and Data Structure
11
3.3.1 HRDI Level 2A Data.
11
3.3.2 HRDI Level 2B Data
11
4.0 Access Software
11
4.1 General Considerations.
12
4.1.1 Arrays
12
4.1.2 Fill Data.
12
4.2 Level 0 Fortran Software
12
4.2.1 Fortran Access Routine to Read Level 0 Data (fth_readl0)
12
4.3 Level 0 C Software
13
4.3.1 C Function Routine to Read Level 0 Data (mcb_readl0_c)
13
4.4 Level 1 Fortran Software
14
4.4.1 Fortran Routine to Read Level 1 Header Record (fth_rdl1_hdr_ns)
14
4.4.2 Fortran Routine to Read Level 1 Data Record (fth_rd_hrdi_hmaf_ns)
15
4.5 Level 1 C Software
16
4.5.1 C Code to Read Level 1 Header Record (fth_rdl1_hdr_ns_c)
16
4.4.2 C Code to Read level 1 Data Record (fth_rd_hrdi_hmaf_ns_c.c)
16
4.5.3 Level 1 C Array Transform Routines
17
4.6 Level 2 Fortran Software
18
4.6.1 Level 2A Fortran Software
18
4.6.1.1 Level 2A Fortran File Header Access Routine (fth_rd_l2b_hdr_str)
18
4.6.1.2 Level 2A Fortran Data Record Access Routine (fth_rd_l2scan_str)
19
4.6.2 Level 2B Fortran Software
19
4.6.2.1 Level 2B Header Record Access Routine (fth_rd_hdr_str)
20
4.6.2.2 Level 2B Data Record Access Routine (fth_rd_l2b_data_str)
20
4.7 Level 2 C Software
21
4.7.1 Level 2A C Software
21
4.7.1.1 Level 2A C Header Record Access Function (fth_l2b_hdr_str_c)
21
4.7.1.2 Level 2A C Data Record Access Function (fth_rd_l2scan_str_c)
22
4.7.2 Level 2B C Software
22
4.7.2.1 Level 2B C Data Record Access Function (fth_read_hrdi_l2b_profile_str_c)
22
Appendix: Additional Software
25
A.1 Additional Level 0 Fortran Software.
25
A.1.1 Level 0 Fortran File Open Routine (opn_l0_file)
25
A.1.2 Level 0 Fortran File Name Routine (gen_l0_name)
26
A.1.3 Level 0 Sample Fortran Driver and Link Procedure
27
A.2 Additional Level 0 C Software.
28
A.2.1 Level 0 C File Open Function Routine (opn_l0_file_c)
28
A.2.2 Level 0 C File Name Function Routine (gen_l0_name_c)
29
A.2.3 Level 0 Sample C Driver and Link Procedure
29
A.3 Additional Level 1 Fortran Software.
30
A.3.1 Level 1 Fortran File Open Routine (opn_l1_file)
30
A.3.2 Level 1 Fortran File Name Routine (gen_l1_name)
32
A.3.3 Level 1 Sample Fortran Driver and Link Procedure
32
A.4 Additional Level 1 C Software
34
A.4.1 Level 1 C File Open Function (opn_l1_file_c)
34
A.4.2 Level 1 C File Name Function (gen_l1_name_c)
34
A.4.3 Level 1 Sample C Driver and Link Procedure
35
A.5 Additional Level 2 Fortran Software
36
A.5.1 Level 2 Fortran File Open Routine (opn_l2_file)
36
A.5.2 Level 2 Fortran File Name Routine (gen_l2_name)
38
A.5.3 Level 2 Sample Fortran Drivers and Link Procedures
38
A.5.3.1 Level 2A Sample Fortran Driver and Limk Procedure
38
A.5.3.2 Level 2B Sample Fortran Driver and Link Procedure
39
A.6 Additional Level 2 C Software
40
A.6.1 Level 2 C File Open Code (opn_l2_file_c)
40
A.6.2 Level 2 C File Name Function (gen_l2_name_c)
41
A.6.3 Level 2 Sample C Drivers and Link Procedures
41
A.6.3.1 Level 2A Sample C Driver and Link Procedure
41
A.6.3.2 Level 2B Sample C Driver and Link Procedure
42

1.0 Introduction.

The following describes software and issues related to the access of data from the High Resolution Doppler Imager (HRDI) instrument, which is part of a complement of instruments on the Upper Atmosphere Research Satellite (UARS). HRDI primarily measures winds and temperature in the earth’s stratosphere and mesosphere. Currently, this document applies to HRDI level 0, level 1, and level 2 data files that have been converted to be compatible with Silicon Graphics computers running under IRIX. The converted files are also compatible with the facilities of the NASA GSFC Distributed Active Archive Center (DAAC). The original files were created by UARS production processing running under the Compaq (Digital Equipment Corporation (DEC)) VMS operating system, on the UARS Central Data Handling Facility (CDHF). Corresponding activities for the UARS instrument calibration data will be included at a later date. The conversion of UARS level 3 data is not part of this activity.

The software that does the actual conversion of the original files is also not part of this description. The following describes the converted files and the software that are provided to access the converted files. Routines to read the converted file are provided in both Fortran and C. The original data were produced using Fortran code.

1.1 Data Products and File Names.

Data products consist of the various levels of HRDI data. Basically, the level 0 data are the telemetry data that have been sorted and stored. Level 1 data include calibrated data in engineering units, such as radiances, while level 2 data are the products used for scientific analysis, such as winds and temperature. The data files within a data level may be further divided into subtypes, such as the specific parameter(s) measured. As described in more detail below, file names are based on the data level, on the data type (subtype), and on the day of year, among other things. Examples of subtypes are winds (level 2) and radiances (level 1).

1.1.1 Level 0 Data Products and File Names

Nominally, there are 15 types of UARS level 0 files for each day. Of these, 5 files are pertinent to HRDI. Examples are

 hrdi_l0_d2370.v0002_c01_prod

 engineering_l0_d1101.v0002_c01_prod

 spacecraft_l0_d2373.v0002_c01_prod

 obc_l0_d1673.v0002_c01_prod

 quality_l0_d1644.v0002_c01_prod

The UARS level 0 file name convention begins with the type acronym (e.g., HRDI, ENGINEERING,...), followed by the level(0). Next is the UARS day number (e.g.,2370; September 12, 1991 corresponds to UARS day number 1, January 19 1992 is UARS day 130). This is followed by the data version number (0002), and then by the cycle number (01). The data version number corresponds to the software that produced the data. For each data version, there is a cycle number that is nominally 1. If reprocessing is needed for the same version, the cycle is incremented. The most recent data correspond to the largest version and cycle numbers. The last four characters of the file name are always 'PROD'.

In the above, file hrdi_l0_d2370.v0002_c01_prod is the HRDI level 0 data for UARS day 2370, while the other 4 types of files contain complementary flight data.

1.1.2 Level 1 Data Products and File Names

There is one type of HRDI level 1 data files which is converted and archived. Nominally the files are generated on a daily basis and there is one file for each day. A typical file name is

 hrdi_l1_shcdf_d0120.v0004_c01_bvbe

The file name convention is similar to that for level 0 files, but the last 4 characters are 'bvbe'.

1.1.3 Level 2 Data Products and File Names

Two types (subtypes) of HRDI level 2 data are converted and archived. Examples of file names are

 hrdi_l2_slos_d0120.v0010_c01_bnbe

 hrdi_l2_sprofile_d0120.v0011_c01_bnbe

The file name convention is similar to that for level 0 and level 1 data. The last 4 characters for level 2 data names are 'bnbe' instead of 'bvbe' for level 1 data, to denote that level 2 data files contain fixed-length records (as opposed to the variable-length records of the level 1 files).

HRDI further breaks the level 2 files into level 2A (subtype LOS) and 2B (subtype PROFILE).

1.2 Software Products and File Names.

The software products are divided into required software and additional products. The required software consists of access functions/routines in both Fortran and C that can be used to read the files. Additional software are those which are provided as a convenience for the user and is not formally part of this software package. Examples of additional software are sample drivers that use the required software, and routines that generate the proper file names and open the files. Additional software is described in the Appendix.

Because some of the software is made to run under both IRIX and under VMS, for the sake of consistency, the following file name conventions are used for the software. File names for Fortran code end in '.for', and files written in C will end in '.c'. Link scripts and executable names end in '.com' and '.exe', respectively.

The names of the software modules are listed next. The software are given in terms of subroutine/function names or file names. The subroutine/function names and file names are used interchangeably, but the latter also contain extensions such as '.for', as noted above.

1.2.1. Level 0 Software

The following routine/function can be used to read each of the 5 level 0 files listed above. File names are given in parenthesis.

Routine name Description

(file name)

------------ -----------

fth_readl0 Fortran routine to read level 0 files of

(fth_readl0.for) all types

mcb_readl0_c C code to read level 0 files of all types

(mcb_readlo_c.c)

1.2.2 Level 1 Software

Routines are provided to read header and data records for each of the level 1 files given above. For the header records, the same routine can be used. For the data records, a different routine is needed for each subtype, as follows:

Routine name Description

(file name)

------------ -----------

fth_rdl1_hdr_ns.for Fortran routine to read header record

(fth_rdl1_hdr_ns.for.for) of level 1 files, subtype HCDF

fth_rd_hrdi_hmaf_ns Fortran routine to read data record of

(fth_rd_hrdi_hmaf_ns.for) level 1 files, subtype HCDF

fth_rdl1_hdr_ns_c C code to read header record of level 1

(fth_rdl1_hdr_ns_c.c) file, subtype HCDF

fth_rd_hrdi_hmaf_ns_c C code to read data record of level 1

(fth_rd_hrdi_hmaf_ns_c.c) file, subtype HCDF

For C, functions are also provided to transform the multidimensional arrays so that the indices are consistent with those of the Fortran arrays (which conform to the documentation). Because they are used only by routines provided here, users need only link the following functions, and need not know how to invoke them. The array transform routines are as follows:

 for_c_mtrx_2 (for_c_mtrx_2.c)

 int_for_c_mtrx_2 (int_for_c_mtrx_2.c)

 int2_for_c_mtrx_2 (int2_for_c_mtrx_2.c)

 ch_for_c_mtrx_2 (ch_for_c_mtrx_2.c)

The names in parenthesis are the corresponding file names.

1.2.3 Level 2 Software

Routine name Description

(file name)

------------ -----------

fth_rd_l2b_hdr_str Fortran routine to read header

(fth_rd_l2b_hdr_str.for) record of level 2A and 2B

 files(subtypes LOS and PROFILE)

fth_rd_l2ascan_str Fortran routine to read data

(fth_rd_l2ascan_str.for) record of level 2A file, subtype

 LOS

fth_rw_l2b_data_str Fortran routine to read data

(fth_rw_l2b_data_str.for) record of file, subtype PROFILE

fth_rd_l2b_hdr_str_c C code to read header record of

(fth_rd_l2b_hdr_str_c.c) level 2A and 2B files (subtypes

 LOS and PROFILE)

fth_rd_l2ascan_str_c C code to read data record of

(fth_rd_l2ascan_str_c.c) level 2A file, subtype LOS

fth_read_hrdi_l2b_profile_str_c C code to read data record of

(fth_read_hrdi_l2b_profile_str_c.c) level 2B file, subtype PROFILE

1.3 Additional Software

As noted earlier, additional software are provided as a convenience to users, but is not formally part of the software package per se. Used together with the access routines, they can be linked into executables to read and list the data. Here, they are listed for completeness. Details are given in the Appendix. File names are given in parenthesis.

1.3.1 Additional level 0 Software
Routine Name Description

(file name)

----------- -----------

get_l0 Fortran sample driver for using level 0

(get_l0.for) routines

opn_l0_file Fortran code to open level 0 files

(opn_l0_file.for)

gen_l0_name Fortran code to generate level 0 file names

(gen_l0_name.for)

get_l0_c C sample driver for using level 0

(get_l0_c.c) function routines

opn_l0_file_c C code to open level 0 files

(opn_l0_file_c.c)

gen_l0_name_c C code to generate level 0 file names

(gen_l0_name_c.c)

1.3.2 Additional Level 1 software

Routine name Description

(file name)

----------- -----------

get_hrdi_l1_hcdf_ns sample Fortran driver to call routines

(get_hrdi_l1_hcdf_ns.for) and read level 1 files of subtype hcdf

opn_l1_file_unix Fortran routine to open level 1 files

(opn_l1_file_unix.for) of subtypes hcdf

gen_l1_name Fortran routine to generates level 1

(gen_l1_name.for) file names for a specific day and data

 version

get_hrdi_l1_hcdf_ns_c sample c code driver to use software to

(get_hrdi_l1_hcdf_ns_c.c) read level 1 files of subtype hcdf

opn_l1_file_c c code to open level 1 file of subtype

(opn_l1_file_c.c) hcdf

gen_l1_name_c c code to generate level 1 file names

(gen_l1_name_c.c)

1.3.2 Additional Level 2 software

Routine name Description

(file name)

----------- -----------

get_hrdi_l2a_los_str sample Fortran driver which uses the

(get_hrdi_l2a_los_str.for) level 2a access routines(subtype los)

get_hrdi_l2b_profile_str sample Fortran driver which uses the

(get_hrdi_l2b_profile_str.for) level 2b access routines

opn_l2_file Fortran routine to open level 2 files

(opn_l2_file.for)

gen_l2_name Fortran routine to generate level 2

(gen_l2_name.for) file name

get_hrdi_l2a_los_str_c sample c code driver which uses level

(get_hrdi_l2a_los_str_c.c) 2a access software(subtype los)

get_hrdi_l2b_profile_str_c sample c code driver which uses level

(get_hrdi_l2b_profile_str_c.c) 2b access software(subtype profile)

opn_l2_file_c c code to open level 2a and 2b files

(opn_l2_file_c.c)

gen_l2_name_c.c c code to generate level 2 file names

2.0 Related Documentation
A general description of the scientific goals and the instrument is found in the following paper:

Hays, Paul B., Vincent J. Abreu, Michael E. Dobbs, David A. Gell, Heinz J. Grassl, and Wilbert R. Skinner, The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite, J. Geophys. Res., 98, 10,713-10,723, June 20, 1993.

Documentation for L2A data have been written by HRDI personnel and is in file

 NURSHR01_V6.DOC.

Documentation for L2B data, written by HRDI personnel, is an in file

 NURSHR02_V6.DOC

The production processing documentation for HRDI is contained in file

 USERS_GUIDE_V4P3.DOC

In addition, there is the document UARS CDHF SOFTWARE SYSTEM (UCSS) PROGRAMMER'S GUIDE TO PRODUCTION SOFTWARE SUPPORT SERVICES, COMPUTER SCIENCES CORPORATION,OCTOBER,1995.

This document describes access routines for UARS data levels 0 and 3, but not for levels 1 and 2. Contents can be found in file

 UCSS_PG_OCT95.MEM

Currently, there is no available documentation available for HRDI level 1 data per se.

3.0 HRDI Files and Data Structure

3.1 HRDI Level 0 Files and Data Structures

Unlike the converted level 1 and level 2 files, the level 0 files are unchanged from their original VMS versions. The contents of level 0 files are mostly byte-oriented, and the relatively few data words that need to be converted are done so by the read routine that is provided and described below. Consequently, users should only use the included software for this purpose.

All Level 0 files contain fixed length records, and data access is direct. The record lengths for relevant file types are as follows

 TYPE RECORD LENGTH (BYTES)

 ---- ---------------------

 hrdi 19520

 engineering 8256

 spacecraft 21568

 obc 14400

 quality 2532

For more details, refer to the document

 UARS CDHF SOFTWARE SYSTEM (UCSS) PROGRAMMER'S GUIDE TO PRODUCTION

 SOFTWARE SUPPORT SERVICES, COMPUTER SCIENCES CORPORATION,OCTOBER,1995.

The contents can be found in file

 UCSS_PG_OCT95.MEM

3.2 HRDI Level 1 Files and Data Structure

An example of a converted level 1 HRDI file is

 hrdi_l1_shcdf_d0120.v0011_c01_bvbe

The files contain variable record lengths and must be read sequentially. It is possible that data does not exist for a particular record, in which case the return code of the access routine will denote which record(s) did not contain data.

For a given day, the original HRDI level 1 files are of the following subtypes:

 hrdi_l1_shcdf_d0120.v0004_c01_prod

 hrdi_l1_sipf_d0120.v0004_c01_prod

 hrdi_l1_slog_d0120.v0004_c01_prod

HRDI personnel have stated that the files with subtypes HCDF and LOG should be archived. The LOG files are in ASCI format and no access routines are needed. Therefore, no conversion of the log files will be made. Consequently, for HRDI level 1 data, conversion and access routines will be provided only for the files of subtype HCDF.

3.3 HRDI Level 2 Files and Data Structure

For a given day, the HRDI level 2 files consists of the following subtypes:

 hrdi_l2_sa_c_map_d0120.v0002_c01_prod

 hrdi_l2_si_map_d0120.v0002_c01_prod

 hrdi_l2_slos_d0120.v0010_c01_prod

 hrdi_l2_sprofile_d0120.v0011_c01_prod

The files of subtype A_C_MAP contain albedo/cloud height slew mapping results. The file of subtype I_MAP contain slew intensity mapping results. HRDI personnel have stated that these files need not be archived. Therefore, for level 2 data, only files of subtypes LOS and PROFILE will be archived.

3.3.1 HRDI Level 2A Data.

An example of a converted level 2A file is

 hrdi_l2_slos_d0120.v0011_c01_bnbe

The files of subtype LOS contain fixed records of length 400 bytes.

Documentation for level 2A data is contained in the file

 NURSHR01_V6.DOC

3.3.2 HRDI Level 2B Data

An example of a converted level 2A file is

 hrdi_l2_sprofile_d0120.v0011_c01_bnbe

The files of subtype PROFILE are fixed length record (804 bytes) files.

Documentation for level 2B data is contained in the file

 NURSHR02_V6.DOC.

4.0 Access Software

Software for accessing the data is provided in the form of Fortran routines and C functions. For consistency, because software is provided in both Fortran and C, and because some of the software are made to run under both IRIX and under VMS, the following name conventions are used for the software: a) file names for Fortran code end in '.for', and files written in C end in '.c'; b) link scripts and executable file names end in '.com' and '.exe', respectively.

4.1 General Considerations.

Nominally, production processing generates HRDI files on a daily basis.

The HRDI level 1 and level 2 data files were originally written in binary with both variable length (level 1), and fixed record lengths (level 2). The converted files contain the same records and structures, including word alignments and boundaries. Record data access is sequential for level 1 files and is direct for level 2 file.

Because the order and structure of the records have been preserved, the original HRDI documentation should remain applicable, but with the following issues in this section borne in mind.

4.1.1 Arrays

The indices of arrays that are read by Fortran routines begin with the same values as the original VMS routines. Arrays that are read by C programs always begin with index 0.

For multidimensional arrays, C and Fortran are different as to which index varies fastest. The C access routines that are provided account for this, so that the various indices of the arrays have the same meaning for both C and Fortran routines.

4.1.2 Fill Data.

The original VMS files use an 'illegal floating point' number for fill data. This number in HEX is '8000'X. HRDI does not use the illegal floating point for fill data, so the user need not take preventive measures to avoid unexpected aborts.

4.2 Level 0 Fortran Software
4.2.1 Fortran Access Routine to Read Level 0 Data (fth_readl0)

Because the level 0 data files are unchanged from the original VMS versions, users should use only fth_readl0 (file fth_readl0.for), or its C equivalent, for reading the level 0 data on systems which conform to the big endian addressing convention (e.g., SGI, SUN). The level 0 data files are essentially byte-oriented, and only the first 64 bytes of the data records (the data record header) need be converted. It was judged that this conversion should be done by the read routine. Record access is direct, and record 1 is the file label record (all ASCII) followed by data records. The first 64 bytes of each data record (the data record header) are mostly information in integer words, and is converted by the read software. The rest of each data record is byte-oriented.

Usage:

 CALL FTH_READL0(LUN_RD,IREC,IREC_LEN,L0_BUFF,

 & ISWAP,IOS_RD)

 ARGUMENT DESCRIPTION

 ARGUMENT TYPE I/O DESCRIPTION

 -------- ---- --- -----------------------------

 LUN_RD I*4 I LOGICAL UNIT OF INPUT FILE

 IREC I*4 I RECORD TO READ (1 OR GREATER)

 IREC_LEN I*4 I RECORD LENGTH IN BYTES

 claes 24640

 haloe 16448

 hrdi 19520

 isams 8256

 mls 10304

 pem 28736

 solstice 2532

 susima 8256

 susimb 8256

 windii 16448

 acrim 4160

 engineering 8256

 spacecraft 21568

 obc 14400

 quality 2532

 L0_BUFF CHAR*1 O BUFFER CONTAINING LEVEL 0 DATA

 (IREC_LEN)

 ISWAP I*4 I 0:FOR LITTLE ENDIAN COMPUTERS

 1:FOR BIG ENDIAN COMPUTERS

 IOS_RD I*4 O READ STATUS 0:NO ERROR

This routine calls 3 other routines that are used to convert from little endian to big endian standards, namely,

 swap32 (swap32.for)

 swap16 (swap16.for)

 swap64 (swap64.for)

The file names are in parenthesis). Users need not know how to call these routines explicitly as they are used only by fth_readl0.

4.3 Level 0 C Software

4.3.1 C Function Routine to Read Level 0 Data (mcb_readl0_c)
Because the level 0 data files are unchanged from the original VMS versions, users should use only mcb_readl0_c (file mcb_readl0_c.c), or its Fortran equivalent, for reading the level 0 data on systems which conform to the big endian addressing convention (e.g., SGI, SUN).

Usage:

void mcb_readl0_c(FILE *fp_rd,int irec,int in_recl_byte,

 signed char *l0_buff,int iswap,int *ios_rd);

 mcb_readl0_c(fp_rd,irec,in_recl_byte,&l0_buff[0],iswap,&ios_rd);

 THIS ROUTINE READS THE UARS LEVEL 0 DATA. IT ASSUMES

 THAT THE DATA FILE CORRESPONDS TO THE ORIGINAL, VMS

 DATA FILES. IN ORDER TO INTERPRET CORRECTLY, FOR

 BIG ENDIAN COMPUTERS, ISWAP SHOULD BE SET TO 1.

 ARGUMENT DESCRIPTION

 ARGUMENT TYPE I/O DESCRIPTION

 -------- ---- --- -----------------------------

 fp_rd FILE* I pointer to input file-buffer-string

 irec I*4 I RECORD NUMBER TO READ (1 OR GREATER)

 irec_len I*4 I RECORD LENGTH IN BYTES

 l0_buff CHAR*1 O BUFFER CONTAINING LEVEL 0 DATA

 iswap I*4 I 0:FOR LITTLE ENDIAN COMPUTERS

 1:FOR BIG ENDIAN COMPUTERS

 ios_rd I*4 O READ STATUS 0:NO ERROR

This routine calls 3 other routines that are used to convert from

little endian to big endian standards, namely,

 swap32_c (swap32_c.c)

 swap16_c (swap16_c.c)

 swap64_c (swap64_c.c)

Users need not know how to invoke these routines explicitly as they are used only by mcb_readl0_c.

4.4 Level 1 Fortran Software

The required level 1 Fortran software consists of two routines, one which users can call to read the level 1 header records and one to read data records. Additional software in the form of a sample driver, a file name generation routine, and a file open routine is provided.. A procedure is also provided to link the driver and routines. The resulting executable can be used to read the data and write selected portions to an output file. More details appear in the Appendix.

4.4.1 Fortran Routine to Read Level 1 Header Record (fth_rdl1_hdr_ns)

Routine rdl1_hdr_ns reads the HRDI level 1 header records of files of subtype HCDF.

Usage:

 CALL FTH_RDL1_HDR_NS(LUN_RD,HDR_REC,IRD_CNTL,IOS_RD)

Argument description:

 ARGUMENT TYPE I/O DESCRIPTION

 -------- ---- --- ---------------------------

 LUN_RD I*4 I LOGICAL UNIT NUMBER OF

 INPUT FILE

 HDR_REC CH*178 O HEADER RECORD

 IRD_CNTL I*4 I ALWAYS 0.

 IOS_RD I*4 O FORTRAN READ STATUS.

 0:NO ERROR

4.4.2 Fortran Routine to Read Level 1 Data Record (fth_rd_hrdi_hmaf_ns)

This routine reads the HRDI level 1 data records of subtype HCDF.

Usage:

 CALL FTH_RD_HRDI_HMAF_NS(LUN_RD,HMAF,

 & TIME, IENG64, RENG64, IQUAL,

 & IDET, TELPOS, ISBCOM, RSBCOM,

 & ISTAT, ENG01, ENG08, IRET,

 & IRD_CNTL,IO_ERR)

 Argument Description:

 ARGUMENT TYPE I/O DESCRIPTION

 -------- ---- --- --------------------------

 LUN_RD I*4 I LOGICAL UNIT NUMBET OF

 INPUT FILE

 HMAF I*4 I/O HMaF counter, incremented

 each pass.Must be

 initialized to -1 by

 caller

 before first call.

 TIME I*4(2) O Time array (YRDAY,MSEC)

 updated only at EMaF

 boundaries

 IENG64 I*2(4) O Digital 64 Second TM

 RENG64 R*4(15) O Analog 64 Second TM

 IQUAL I*4(2,2) O Data quality flags

 IDET I*2(32,64) O counts

 TELPOS R*4(2,64) O Telscope Azimuth and

 Zenith

 ISBCOM I*2(8) O Digital Subcom

 RSBCOM R*4(56) O Analog Subcom

 ISTAT I*2(3,64) O Fast Status

 ENG01 BYTE(4,8) O 1 second ETM

 ENG08 R*4(2) O 8 second ETM

 IRET I*4 O RETURN CODE.

 For each call to this

 routine,8 records are

 read. if no data exists

 for that record, the

 the corresponding bit

 (of 1 through 9) of

 IRET is cleared.

 IRD_CNTL I*4 I ALWAYS ZERO

 IO_ERR I*4 O FORTRAN RETURN STATUS.

 0:NO ERROR

4.5 Level 1 C Software

4.5.1 C Code to Read Level 1 Header Record (fth_rdl1_hdr_ns_c)

C function routine fth_rdl1_hdr_ns_c reads the HRDI level 1 data (subtype DATA), both header and data records. Aside form opening the file, it is the only routine users need to call for reading the file, although the routine itself uses array transform routines.

Usage:

void fth_rdl1_hdr_ns_c(FILE* ifp,

 char* hdr_rec,int ird_cntl,int* ios_rd)

argument description:

 argument type i/o description

 -------- ---- --- -------------------------------

 ifp FILE i pointer to input file

 pointer

 hdr_rec ch[178] o header record

 ird_cntl int i always 1 for IRIX/UNIX

 ios_rd int o read status. 0:no error

4.4.2 C Code to Read level 1 Data Record (fth_rd_hrdi_hmaf_ns_c.c)

Usage:

 void fth_rd_hrdi_hmaf_ns_c(FILE* ifp, int* hmaf,

 int* time, short int* ieng64, float* reng64,int

 iqual[2][2],

 short int idet[32][64], float telpos[2][64],

 short int* isbcom, float* rsbcom,

 short int istat[3][64], char eng01[4][8],

 float* eng08, int* iret,

 int ird_cntl,int* ios_rd)

 argument description:

 argument type i/o description

 -------- ---- --- --------------------------

 ifp file i input file pointer

 pointer

 hmaf i*4 i/o hmaf counter, incremented

 each pass.must be

 initialized to -1 by

 caller before first call.

 time i*4(2) o time array (yrday,msec)

 updated only at emaf

 boundaries

 ieng64 i*2(4) o digital 64 second tm

 reng64 r*4(15) o analog 64 second tm

 iqual i*4(2,2) o data quality flags

 idet i*2(32,64) o counts

 telpos r*4(2,64) o telscope azimuth and

 zenith

 isbcom i*2(8) o digital subcom

 rsbcom r*4(56) o analog subcom

 istat i*2(3,64) o fast status

 eng01 byte(4,8) o 1 second etm

 eng08 r*4(2) o 8 second etm

 iret i*4 o return code.

 bits are cleared from the

 return code for each

 missing record. for each

 call to this routine,

 9 records (11 variables

 total) are read. if a

 given record

 contains no data, the

 corresponding

 bit (of 9 bits) is

 cleared. The zeroth bit

 is for header record.

 the original VMS Fortran

 cleared bits 1 through 9,

 if needed. this routine

 is meant to run under UNIX

 IRIX, and the bits cleared

 here are 30 to 22, in

 order to generate the same

 integer value for IRET.

 ird_cntl i*4 i always zero

 io_err i*4 o fortran return status.

 0:no error

As noted for the corresponding Fortran access routine, there is currently no independent documentation available which describe the variables other than the in-line comments of the original HRDI Fortran code.

4.5.3 Level 1 C Array Transform Routines

Because C and Fortran storage (row major, row minor) for multidimensional arrays is not consistent with each other, software is needed to transform the multidimensional arrays after reading from disk so that they can be interpreted in the same manner by both C and Fortran. These are as follows:

 for_c_mtrx_2 (for_c_mtrx_2.c)

 int_for_c_mtrx_2 (int_for_c_mtrx_2.c)

 int2_for_c_mtrx_2 (int2_for_c_mtrx_2.c)

 ch_for_c_mtrx_2 (ch_for_c_mtrx_2.c)

Users do not need to know how to use these routines, as they are called only by the function routine fth_read_hrdim_l1_c (file fth_read_hrdim_l1_c.c). Using the link procedure file given in the Appendix will automatically link these functions.

4.6 Level 2 Fortran Software

The required software consists of routines which users can call to read the level 2 files. Additional software in the form of sample drivers, file name generation routines, and file open routines are provided. Procedures are also provided to link the drivers and routines. The resulting executables can be used to read the data and write selected portions to an output file. Details are given in the Appendix.

As noted above, HRDI level 2 data consist of level 2A and level 2B data.

4.6.1 Level 2A Fortran Software

The required software consists of 2 routines that are based on original HRDI production processing software. The read is by direct access. The first routine reads the header record, and the second routine reads the data records.

4.6.1.1 Level 2A Fortran File Header Access Routine (fth_rd_l2b_hdr_str)

Routine fth_rd_l2b_hdr_str (file fth_rd_l2b_hdr_str.for) reads the level 2A file header record.

Usage:

CALL FTH_RD_L2B_HDR_STR(LUN_IN,HEADER,IOS_RD)

Note that although the routine name contains the characters L2B, it is used to read level 2A headers as well.

This routine reads THE HEADER RECORD OF A HRDI LEVEL 2A DATA FILE.

Argument description:

 ARGUMENT TYPE I/O DESCRIPTION

 -------- ---- --- --------------------------

 LUN_IN I*4 I LOGICAL UNIT NUMBER OF

 INPUT FILE

 HEADER STRUCTURE O HEADER DATA. SEE INCLUDE

 FILE L2_HEADER.INC AND

 BELOW.

 IOS_RD I*4 O FORTRAN READ STATUS

 (0:NO ERROR)

4.6.1.2 Level 2A Fortran Data Record Access Routine (fth_rd_l2scan_str)

Routine fth_rd_l2scan_str (file fth_rd_l2scan_str.for) reads the level 2A data records of subtype LOS. Specifically, it reads a scan from a HRDI level 2A data file (subtype LOS). A scan is made of one or more file data records, with each scan corresponding to a given altitude. For a given altitude, the data are stored in structure record l2a_record (alt_index)

Usage:

 CALL FTH_RD_L2ASCAN_STR(LUN_RD,SCAN_NUM,L2A_RECORD,

 & SCAN_L,SCAN_D,TOT_SCANS, ERRCODE,

 & NUM_ALT,IOS_RD_TBLE,IOS_RD)

ARGUMENT LIST DESCRIPTION:

 ARGUMENT TYPE I/O DESCRIPTION

 -------- ---- --- --------------------------

 LUN_RD I*4 I LOGICAL UNIT NUMBER OF

 INPUT FILE

 SCAN_NUM I*4 I SCAN NUMBER TO BE READ

 L2A_RECORD ARRAY O RECORD CONTAINING DATA.

 STRUCTURE O EACH ELEMENT CORRESPONDS

 TO DATA AT A GIVEN

 ALTITUDE.SEE INCLUDE FILE

 L2A_STRUCT.INC AND BELOW.

 SCAN_L I*4 O Holds scan look direction

 forward/back

 SCAN_D I*4 O Holds scan direction

 up/down

 TOT_SCANS I*4 O Total number of scans in

 the file

 ERRCODE I*4 O HRDI Error code (odd=ok,

 even=bad)

 NUM_ALT I*4 O NUMBER OF ALTITUDES WITH

 DATA.THE FIRST NUM_ALT

 ELEMENTS OF L2A_RECORD.

 IOS_RD_TBLE I*4 O FORTRAN READ STATUS FOR

 TABLE RECORD (0:NO ERROR)

 IOS_RD I*4 O FORTRAN READ STATUS FOR

 DATA REOCRD (0:NO ERROR)

4.6.2 Level 2B Fortran Software

The required software consists of 2 routines that are based on original HRDI production processing software, to read the level 2B data of subtype PROFILE.

4.6.2.1 Level 2B Header Record Access Routine (fth_rd_hdr_str)

Routine fth_rd_l2b_hdr_str (file fth_rd_hdr_str.for) reads the header record of the HRDI level 2B data of subtype PROFILE. There is one header record for each file, access is direct, and it is record number 1.

Usage:

 CALL FTH_RD_L2B_HDR_STR(LUN_IN,HEADER,IOS_RD)

Note that although the routine name contains the characters L2B, it is used to read level 2A headers as well.

This routine reads THE HEADER RECORD OF A HRDI LEVEL 2A DATA FILE.

Argument description:

 ARGUMENT TYPE I/O DESCRIPTION

 -------- ---- --- --------------------------

 LUN_IN I*4 I LOGICAL UNIT NUMBER OF

 INPUT FILE

 HEADER STRUCTURE O HEADER DATA. SEE INCLUDE

 FILE L2_HEADER.INC AND

 BELOW.

 IOS_RD I*4 O FORTRAN READ STATUS

 (0:NO ERROR)

4.6.2.2 Level 2B Data Record Access Routine (fth_rd_l2b_data_str)

Routine fth_rd_l2b_data_str (file_fth_rd_l2b_data_str.for) reads the data records of the HRDI level 2B data of subtype PROFILE. The data records follow the header record, and access is direct.

Usage:

SUBROUTINE FTH_RD_L2B_DATA_STR(LUN_IN,REC_CNT,L2B_RECORD,

 &
IOS_RD)

C

C
THIS ROUTINE READS/WRITES HRDI LEVEL 2B DATA.

C
BASED ON HRDI ROUTINE WRITE_2B.FOR

C

C---

C

C Arguments Type I/O Description

C --------- ---- --- ---------------------------------

C LUN_IN I4 I level 2B data file unit

C REC_CNT I4 RECORD NUMBER TO READ

C L2B_RECORD STRUCTURE O level 2B data record

C IOS_RD I4 O FORTRAN READ STATUS

C

IMPLICIT NONE

C

INCLUDE 'l2b_params.inc'

INCLUDE 'l2b_profile.inc'

C

INTEGER*4 LUN_IN,IOS_RD,REC_CNT

RECORD /L2B_REC/ L2B_RECORD

C

READ(LUN_IN,REC=REC_CNT,IOSTAT=IOS_RD) L2B_RECORD

C

IF(IOS_RD.NE.0) RETURN

C

RETURN

END

4.7 Level 2 C Software

As in the Fortran case, the required software consists of routines which users can call to read the level 2 files. Additional software in the form of a sample driver, a file-name generation function, and a file open function are provided. A procedure is also provided to link the driver and routines. The resulting executable can be used to read the data and write selected portions to an output file. More details are given in the Appendix.

4.7.1 Level 2A C Software

4.7.1.1 Level 2A C Header Record Access Function (fth_l2b_hdr_str_c)

Function fth_l2b_hdr_str_c (file fth_l2b_hdr_str_c.c) reads the header record of a level 2A file.

Usage:

void fth_rd_l2b_hdr_str_c(FILE* ifp,

 struct header_struct* header,int* ierr)

argument description:

 argument type i/o description

 -------- ---- --- --------------------------

 ifp file i for input file

 pointer

 header structure o header data. see include

 file l2_header.i and

 below.

 ierr i*4 o read status (0:no error)

4.7.1.2 Level 2A C Data Record Access Function (fth_rd_l2scan_str_c)

Function fth_rd_l2scan_str_c (file fth_rd_l2scan_str_c.for) reads the level 2A data records (one or more scans) of subtype LOS. A scan is made of direct access records, with each scan corresponding to a given altitude. Each call reads one scan (up to several records), and is stored in the array structure l2a_record. Upon completion, each element of the array structure will contain data for a given altitude, namely, record l2a_record (alt_index).

Usage:

 void fth_rd_l2ascan_str_c(FILE* ifp,int scan_num,

 struct l2a_grid* l2a_record,

 int* scan_l, int* scan_d,int* tot_scans,

 int*errcode,

 int* num_alt,int* ios_rd_tble,int* ios_rd)

Argument description:

 argument type i/o description

 -------- ---- --- ----------------------------

 ifp file i for input file

 pointer

 scan_num i*4 i scan number to be read

 l2a_record array o record containing data. Each

 structure o element corresponds to data

 at a given altitude.see

 include file l2a_struct.inc.

 scan_l i*4 o holds scan look direction

 forward/back

 scan_d i*4 o holds scan direction up/down

 tot_scans i*4 o total number of scans in the

 file

 errcode i*4 o hrdi error code (odd=ok,

 even=bad)

 num_alt i*4 o number of altitudes with

 data.the first num_alt

 elements of l2a_record.

 ios_rd_tble i*4 o read status for table

 record (0:no error)

 ios_rd i*4 o read status for data

 record (0:no error)

4.7.2 Level 2B C Software

4.7.2.1 Level 2B C Data Record Access Function (fth_read_hrdi_l2b_profile_str_c)

Function fth_read_hrdi_l2b_profile_str_c (file fth_read_hrdi_l2b_profile_str_c.c) reads the level 2B header and data records of subtype PROFILE.

It is important to note that the record structures are based on those written by HRDI personnel. To ensure that the variable alignments are maintained as in the original (and therefore be consistent with the data file), users should include the DIRECTIVE PRAGMA in the code as follows:

 #pragma pack(1)

Usage:

void fth_read_hrdi_l2b_profile_str_c(int ird_rec,

 int itype,

 FILE* ifp,struct header_struct* header,

 struct l2b_rec* l2b_record,

 int in_recl,int* ierr)

argument descritption:

 argument itype i/o description

 -------- ----- --- ---------------------------

 rd_rec int i record number to read

 itype int i type of record to read.

 1:header record (record 1)

 1:data record (record 2 and

 higher)

 ifp FILE i pointer to input file

 pointer

 header struct o header record structure

 see include file

 l2_header.i and below

 l2b_record struct o data record structure

 see include file

 l2b_profile.i and below

 in_recl int i length of record in

 words(4 bytes)

 ierr int o read status. 0:no error

struct header_struct

{

 char sfdu[72]; /*!sfdu lebel for file*/

 char version[8]; /*!version # of the s/w*/

 char cre_time[23];/*!file creation time*/

 char node[15]; /*!node file was created on*/

 char image[132]; /*!image which created the file*/

} header;

struct l2b_rec

{

 short int region; /*/-1/ !0=stratosphere;

 1=mesosphere;2
!-1=data not available*/

 int ut[2]; /*/2*0/ !udtf universal time 10*/

 float local_time; /*/0./ !hour local military time
14*/

 int time_range[2]; /*/2*0/!udtf time duration 22*/

 float lat; /*/0./!deg latitude 26*/

 float chisq; /*/0./ !chi square of model fit 30*/

 float long_p; /*/0./ !deg longitude 34*/

 float chisq_0; /*/0./ !chi square of fit before

 inversion 38*/

 short int s_anomaly; /*/0/!t/fs. atlantic anomaly flag

 40*/

 int pid; /*/0/!pid 44*/

 float solar_zen_ang; /*/0./!deg solar zenith angle
48*/

 float scatter_ang; /*/0./!deg scattering angle 52*/

 float view_dir; /*/0./ !deg angle from north to look

 dir 56*/

 float albedo; /*/0./ ! effective albedo 60*/

 short int albedo_quality; /*/0/! albedo quality 62*/

 float surface_ht; /*/0./ !km effective surface

 height66*/

 short int surface_quality; /*/0/ ! surface height

 quality68*/

 float track_ang; /*/0./!deg angle along track 72*/

 short int scan_type; /*/4/!0=right,forward 1=r,back 2=l,

 f 3=l,b 74*/

 int profile_id; /*/0/ !identifier for profile type 78*/

 /* !see l2b_profs.inc for values

 ..profile in level 2b data record.*/

 short int num_alt; /*/0/!number of altitudes in

 profile 80*/

 float alt[n_grid]; /*/n_grid*0./ !km altitude 180*/

 float measure[n_grid]; /*/n_grid*0./ !measurement 280*/

 float variance[n_grid]; /*/n_grid*0./ !variance 380*/

 double wave_num[n_grid]; /*n_grid*0.d0/ wave number 580*/

 short int profile_quality; /*/0/!1000 * track angle

 difference betw this

 !scan and nearest scan

 with opposite view direction

 !(in tenths of a degree)+#

 of alts in scan 582

 !ie 54321 means 2a scan

 had 21 thts and was 54.3

 !degrees from nearest 'pair'

 scan (other look dir)*/

 short int l2a_scan1; /*/0/!l2a scan used to produce

 profile 584*/

 short int l2a_scan2; /*/0/ !kernel scan used to produce

 profile 586*/

 short int profile_status;/*/0/!aero model number for

 profile 588*/

 float albedo_variance;/*/0./! albedo variance 592*/

 float surface_ht_variance;

 /*/0./ !surface height

 variance 596*/

 short int az; /*/0/ !look azimuth (deg) 598*/

 short int spare2i; /*/0/! 600*/

} l2b_record;

Appendix: Additional Software

Sample software that uses the file access software described above is described in this Appendix. It should be noted that the software described here is not a formal part of the required software package, and is provided only as a convenience to users. The software described below consists of sample drivers, and functions and routines that generate file names and open the files. These are provided in Fortran and C.

This software, combined with the access software described earlier in the main text, is self-contained, and can be linked into executables. Link procedures are provided and described below.

For convenience, sample software to use the file access software which have been described above are described in this Appendix. It should be noted that the software described is are not a formal part of the required software package, and are provided only as a convenience to users. The software described below consist of sample drivers, and functions and routines which generate file names and open the files. These are provided in Fortran and C

This software, combined with the access software described earlier in the main text, constitute enough code which can be linked into executables. Link procedures are also provided and described below.

A.1 Additional Level 0 Fortran Software.
A.1.1 Level 0 Fortran File Open Routine (opn_l0_file)

The Fortran routine opn_l0_file (file opn_l0_file.for) opens a UARS level 0 file with the proper attributes. It calls routine gen_l0_name (file gen_l0_name.for) to generate the needed filenames based on user-input values such as the instrument acronym, the subtype, the uars day, and the data version, as described above. For each data version, there is a cycle number that is greater than or equal to 1. Users need not know the cycle number as long as the variable ICYC_MAX is set to be larger than the actual cycle number of the file. A value of 10 for ICYC_MAX is usually large enough. Routine opn_l0_file will begin with cycle number 1 and will increment cycle numbers until a file is successfully opened or until ICYC_MAX is reached. The data version number and the cycle number are determined by production processing. The data version number corresponds to the software version that was used to generate the file, and the cycle number is incremented each time reprocessing was needed for the same file using the same software.

Usage:

 CALL OPN_L0_FILE(INSTR,IUARS_DAY,IVER_IN,

 & ICYC_MAX,ITYPE,IN_RECL,ICYC,LUN,FLNAME,IVAR,IDIRECT,IOS)

 ARGUMENT LIST DESCRIPTION

 ARGUMENT TYPE I/0 DESCRIPTION

 -------- ---- --- -------------------------------------

 INSTR CH*12 I INSTRUMENT ACRONYM. e.g.,

 claes, haloe, hrdi, isams, mls, pem,

 solstice, susima, susimb, windii,

 acrim,

 engineering, spacecraft, obc, quality

 IUARS_DAY I*4 I UARS DAY.

 IVER_IN I*4 I DATA VERSION.

 ICYC_MAX I*4 I MAXIMUM CYCLE NUMBER TO TRY.

 ITYPE I*4 I SET LAST 4 CHARACTERS OF INPUT FILE

 NAME. 1: PROD

 2: BNBE

 3: BNLE

 -2: BVBE

 -3: BVLE

IN_RECL I*4 I RECORD LENGTH (WORDS) OF

 FILE IF FIXED LENGTH.

 IF VALUE IS GT 0 FILE IS OPENED

 AS WITH RECL KEYWORD SET TO VALUE OF

 IN_RECL.

 ICYC I*4 I/O IF 0 ON INPUT, ROUTINE WILL

 TRY TO OPEN EXISTING FILE. CYCLES

 NUMBERS FROM 1 TO ICYC_MAX WIIL BE

 TRIED. IF EXISTING FILE IS FOUND,

 ICYC IS RETURNED. IF FILE NOT FOUND,

 ICYC IS SET BACK TO 0.

 LUN I*4 I/O LOGICAL UNIT NUMBER OF FILE.

 IF NOT ZERO ON INPUT, THE INPUT VALUE

 IS USED TO OPEN THE FILE.

 IF ZERO ON INPUT, LUN WILL

 BE SET TO 95 (INPUT) IF ICYC IS 0,

 AND TO 96 (OUTPUT) IF ICYC IS NOT 0.

 FLNAME CH*50 O FLNAME OF FILE.

 IVAR I*4 I IF O, OPEN FOR FIXED RECORD LENGTH

 IF -1, OPEN WITH KEYWORD RECORDTYPE

 SET TO 'SEGMENTED'

 IF -2, OPEN WITH KEYWORD RECORDTYPE

 SET TO 'VARIABLE'

 IDIRECT I*4 I INPUT 0:SEQUENTIAL ACCESS,1:DIRECT

 IOS I*4 O STATUS.

A.1.2 Level 0 Fortran File Name Routine (gen_l0_name)

Routine gen_l0_name (file gen_l0_name.for) generates the correct file name based on user-input values of the instrument and subtype acronyms, the UARS day number, and the file data version.

This routine is called only by opn_l0_file, and users only need to link this routine.

Usage:

 CALL GEN_L0_NAME(INSTR,IUARS_DAY,FNAME,IVER,ICYC,

 & ITYPE)

 ARGUMENT DESCRIPTION:

 ARGUMENT TYPE I/0 DESCRIPTION

 -------- ---- --- ---------------------------------------

 INSTR CH*12 I INSTRUMENT ACRONYM.

 IUARS_DAY I*4 I UARS DAY.

 IVER I*4 I DATA VERSION.

 ICYC I*4 I DATA VERSION.

 FNAME CH*50 O filename

A.1.3 Level 0 Sample Fortran Driver and Link Procedure

An example of a driver that uses fth_readl0 (file fth_readl0.for) to read all types of level 0 files is provided and given in file

 get_l0.for

The command/script file

 get_l0.com

can be used to link and generate an executable named

 get_l0.exe

For linking, in addition to the sample driver (file get_l0.for), the routines fth_readl0 (file fth_readl0.for), opn_l0_file (file opn_l0_file.for), gen_l0_name (file gen_l0_name.for), swap16 (file swap16.for), swap32 (file swap32.for), and swap64 (file swap64.for), (as noted earlier) are needed as well.

Upon running program get_l0.exe interactively, the following prompt appears on the screen:

ENTER FILE TYPE NUMBER

 1:CLAES,2:HALOE,3:HRDI,4:ISAMS,5:MLS,6:PEM

 7:SOLSTICE,8:SUSIMA,9:SUSIMB,10:WINDII,11:ACRIM

 12:ENGINEERING,13:SPACECRAFT,14:OBC,15:QUALITY

ENTER UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER'

(-1 FOR BOTH TO DO ALL DATA RECORDS)

DATA VERSION NUMBER,WRITE ASCI FILE[0/1]

SWAP BYTES[0/1]

An example of a user input to this prompt is

12 130 1 10 2 1 1

The different input variables are separated with blanks. As described in the prompt, the first input, '12', selects the ENGINEERING file to open and read. The 130 selects the UARS day to read (there is one file for each day). Recall that UARS day number 1 is September 12, 1991, and January 1 1992 corresponds to UARS day 112. The '1 10' selects the first and last data records wanted (in this case the first 10 records). The next input, '2', is the file data version number. The next to last input, '1', means that an output file (in ASCII) of selected data will be written. The last input, also '1', is used for big endian computers, and a value of '0' is input for little endian systems.

With the above input, the program will read the first 10 data records of the level 0 data file named

 engineering_l0_d0130.v0002_c01_prod

and write a text file named

 engineering_l0_d0130.v0002_c01_asci

containing certain portions of data from the 10 selected records.

UARS file name conventions have been described in Section 1.1. Here, the output file name is the same as the input level 0 file except for the last 4 characters. In the above example, the user need not know the cycle number because the software first tries cycle number 1 and if needed, increments the cycle number until the file is found, or until a preset maximum is reached. This is the value of icyc_max and is currently set to 5. See the previous subsection on routine OPN_L0_FILE for more details.

A.2 Additional Level 0 C Software.

A.2.1 Level 0 C File Open Function Routine (opn_l0_file_c)

The C function routine opn_l0_file_c (file opn_l0_file_c.c) opens a UARS level 0 file with the proper attributes. It calls gen_l0_name_c (file gen_l0_name_c.c) to generate the file name based on user-input values such as the acronyms for instrument and parameter, the uars day number, and the data version number, which have been described above. The use of this function parallels that for the Fortran version, which is described in Section A.1.1.

Usage:

 void opn_l0_file_c(char *instr,int iuars_day,int iver_in,

 int icyc_max,int itype_rd,int in_recl,int *icyc,FILE **fp_rd,

 char *flname_rd,int *ios_rd);

 opn_l0_file_c(instr,iuars_day,iver_in,icyc_max,itype_rd,

 in_recl,&icyc,&fp_rd,flname_rd,&ios_rd);

 arguement type i/0 description

--

 instr ch*12 i instrument acronym.

 iuars_day i*4 i uars day. (e.g., sept 12, 1991 is

 uars day 1, jan 1 1992 is uars

 day 112; jan 1 1993 is uars day 478)

 iver_in i*4 i data version.

 icyc_max i*4 i maximum cycle number to try.

 itype i*4 i set last 4 characters of input file

 name.

 1: prod

 2: bnbe

 3: bnle

 4: asci

 in_recl i*4 i record length (bytes) of file if fixed

 length.

 icyc i*4 i/o nominally 0 on input.

 if 0 on input, routine will assume an

 existing file. cycles number will be

 incremented from 1 to icyc_max until

 success. if existing file is found,

 icyc is returned.

 ifp FILE** o pointer to file pointer

 flname ch*50 o flname of file.

 ios i*4 o status of open.

A.2.2 Level 0 C File Name Function Routine (gen_l0_name_c)

Function routine gen_l0_name_c (file gen_l0_name_c.c) generates the correct file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version. This routine is called only by

opn_l0_file_c.c, and users only need to link this routine.

A.2.3 Level 0 Sample C Driver and Link Procedure

An example of a driver that uses mcb_readl0_c to read all types of level 0 files is provided and given in file

 get_l0_c.c

The command/script file

 cclink_get_l0.com

can be used to compile, link, and generate an executable named

 get_l0_c.x

For linking, in addition to the sample driver (file get_l0_c.c), the functions mcb_readl0_c (file mcb_readl0_c.c), opn_l0_file_c (file opn_l0_file_c.c), gen_l0_name_c (file gen_l0_name_c.c), swap16_c (file swap16_c.c), swap32_c (file swap32_c.c), and swap64_c (file swap64_c.c) (noted earlier) are needed as well.

Upon running program get_l0_c.x interactively, the following prompt appears on the screen:

ENTER INSTRUMENT NUMBER

 1:CLAES,2:HALOE,3:HRDI,4:ISAMS,5:MLS,6:PEM

 7:SOLSTICE,8:SUSIMA,9:SUSIMB,10:WINDII,11:ACRIM

 12:ENGINEERING,13:SPACECRAFT,14:OBC,15:QUALITY

ENTER UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER

(-1 FOR BOTH TO DO ALL DATA RECORDS)

DATA VERSION NUMBER

WRITE ASCI FILE (0=NO,1=YES,2=to SCREEN)

SWAP BYTES (0=NO,1=YES)

An example of a user input to this prompt is

5 486 1 3 2 1 1

The different input variables are separated with blanks. As described

in the prompt, the first input, '5', selects the MLS file to

open and read. The '486' selects the UARS day to read (there is one file

for each day). Recall that UARS day number 1 is September 12, 1991, and

January 1 1992 corresponds to UARS day 112. The '1 3' selects the first

and last data records wanted (in this case the first 3 records). The

next input, '2', is the file data version number. The next to last input, '1', means that an ASCII output file of selected data will be written. The last input, also '1', is used for big endian computers, and a value of '0' is input for little endian systems.

With the above input, the program will read the first 3 data records of

the level 0 data file named

 mls_l0_d0486.v0002_c01_prod

and write a text file named

 mls_l0_d0486.v0002_c01_asci

containing certain portions of data from the 3 selected records.

UARS file name conventions have been described in Section 1.1. Here,

the output file name is the same as the input level 0 file except for

the last 4 characters. In the above example, the user need not know the

cycle number because the software first tries cycle number 1 and if

needed, increments the cycle number until the file is found, or until a

preset maximum is reached. This is the value of icyc_max and is currently set to 5. See the previous subsection on routine opn_l0_file_c for more details.

A.3 Additional Level 1 Fortran Software.
A.3.1 Level 1 Fortran File Open Routine (opn_l1_file)

The Fortran routine opn_l1_file (file opn_l1_file.for) opens a UARS level 1 file with the proper attributes. It calls routine gen_l1_name (file gen_l1_name.for) to generate the needed file name based on user-input values such as acronyms for the instrument and parameter, the uars day, and the data version number. Details are the same as described above in Section A.1.1 for the opn_l0_file routine.

An example of using this routine is given by the sample driver in file get_claes_l1_claes_ns.for noted above.

Usage:

 CALL OPN_L1_FILE(INSTR,PARAM,IUARS_DAY,IVER_IN,

 & ICYC_MAX,ITYPE_IN,IN_RECL,ICYC,LUN,FLNAME,IVAR,

 & IDIRECT,IOS)

Argument list description:

 ARGUMENT TYPE I/0 DESCRIPTION

--

 INSTR CH*12 I INSTRUMENT ACRONYM.

 PARAM CH*12 I MEASURE PARAMETER.

 IUARS_DAY I*4 I UARS DAY. (E.G., SEPT 12,

 1991 IS UARS DAY 1, JAN 1

 1992 IS UARS DAY 112;

 JAN 1 1993 IS UARS DAY

 478)

 IVER_IN I*4 I DATA VERSION NUMBER.

 ICYC_MAX I*4 I MAXIMUM DATA CYCLE NUMBER

 TO TRY.

 ITYPE_IN I*4 I USED TO DETERMINE LAST 4

 CHARACTERS OF FILE NAME:

 0 OR 1: PROD

 2: BNBE

 3: BNLE

 4: ASCI

 ALSO USED FOR CONVERSION

 IF APPLICABLE.

 1: NOCONVERSION

 2: CONVERT = 'BIG ENDIAN'

 3: CONVERT = 'LITTLE

 ENDIAN'

 IN_RECL I*4 I RECORD LENGTH (WORDS) OF

 FILE IF FIXED LENGTH.

 IF VALUE IS GT 0 FILE IS

 OPENED WITH RECL KEYWORD

 SET TO VALUE OF IN_RECL.

 IF VALUE IS ZERO, FILE

 WILL BE OPENED WITHOUT

 RECL KEYWORD. AND

 DEFAULT IS USED. FOR

 VARIABLE RECORDS,

 VALUES FOR VMS ARE:

 SEGMENTED:2048(BYTES)

 OTHERS:133

 ICYC I*4 I/O SHOULD BE NOMINALLY SET

 TO 0.

 IF 0 ON INPUT, ROUTINE

 WILL TRY TO OPEN EXISTING

 FILE. CYCLES NUMBERS FROM

 1 TO ICYC_MAX WIIL BE

 TRIED. IF EXISTING FILE IS

 FOUND,ICYC IS RETURNED. IF

 FILE NOT FOUND,

 ICYC IS INCREMENTED BY 1

 UP TO ICYC_MAX.

 IF NOT ZERO ON INPUT, FILE

 IS ASSUMED NOT TO EXIST

 AND A NEW FILE IS OPENED

 USING THE VALUE IF ICYC.

 LUN I*4 I/O LOGICAL UNIT NUMBER OF

 FILE.

 IF NOT ZERO ON INPUT, THE

 INPUT VALUE

 IS USED TO OPEN THE FILE.

 IF ZERO ON INPUT, LUN WILL

 BE SET TO 95 (INPUT) IF

 ICYC IS 0.

 AND TO 96 (OUTPUT) IF ICYC

 IS NOT 0.

 FLNAME CH*50 O FLNAME OF FILE.

 IVAR I*4 I IF O, OPEN FOR FIXED

 RECORD LENGTH,

 AND IS THE CASE FOR CLAES.

 IF -1, OPEN WITH KEYWORD

 RECORDTYPE SET TO

 'SEGMENTED'(VMS ONLY)

 IF -2, OPEN WITH KEYWORD

 RECORDTYPE SET TO

 'VARIABLE'

 IDIRECT I*4 I INPUT 0:SEQUENTIAL

 ACCESS,1:DIRECT.

 DIRECT IS APPLICABLE TO

 CLAES

 IOS I*4 O STATUS AFTER ATTEMPT TO

 OPEN.

A.3.2 Level 1 Fortran File Name Routine (gen_l1_name)

Routine gen_l1_name (file gen_l1_name.for) generates the correct file name based on user-input values of the instrument and subtype acronyms, the UARS day number, and the file data version number.

This routine is called only by opn_l1_file, and users only need to link this routine.

A.3.3 Level 1 Sample Fortran Driver and Link Procedure

An example of a driver that uses routines fth_rdl1_hdr_ns and fth_rd_hrdi_hmaf_ns is given in file get_hrdi_l1_hcdf_ns.for.

The file

 get_hrdi_l1_hcdf_ns.com

can be used to link and generate an executable named

 get_hrdi_l1_hcdf_ns.exe

Upon running program get_hrdi_l1_hcdf.exe interactively, the following prompt appears on the screen:

ENTER INSTR(LWR CASE, IN SNGL QUTS),PARAMETER(SNGL QUTS)

BEGIN UARS DAY,END UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER

(-1 FOR EACH TO DO ALL DATA RECORDS)

DATA VERSION

IN FILE TYPE (DEFAULT:0 FOR .PROD)

(FOR VARIABLE FILE TYPES, ENTER EQUIVALENT NEGATIVE VALUE TO

(CREATE FILE NAMES DENOTING VARIABLE OR SEGMENTED (E.G.,BVBE)

An example of a user input to this prompt is

'hrdi' 'hcdf' 122 122 1 100 4 -2 1

The different input variables are separated with blanks. The first string is the hrdi instrument acronym, and the second is the subtype acronym. The '122 122' selects the begin and end UARS days to read (there is one file for each day). Here, only the file for UARS day 122 is processed. UARS day number 1 is September 12, 1991, and January 1 1992 corresponds to UARS day 112. The '1 100' selects the first and last data records wanted (in this case the first 100 records). The '4' gives the file data version number, and the '-2' is used for the file name generation (big endian). The negative value denotes the variable record nature of the file. The last input, namely, '1' chooses the option to write the selected records to a text file for analysis. A '0' does not produce a file.

With the above input, the program will read the header record and the first 100 data records of the level 1 data file named

 hrdi_l1_shcdf_d0122.v0004_c01_bvbe

and write a text file named

 hrdi_l1_shcdf_d0122.v0004_c01_asci

that contains certain portions of data from the 100 selected records.

A.4 Additional Level 1 C Software

A.4.1 Level 1 C File Open Function (opn_l1_file_c)

The C function routine opn_l1_file_c (file opn_l1_file_c.c) opens a UARS level 1 file with the proper attributes. It calls routine gen_l1_name_c (file gen_l1_name_c.c) to generate the filename based on input values such as acronyms for the instrument (i.e., claes), parameter (i.e., claes), uars day, and the data version number, which have been described previously. Details are the same as described above in Section A.1.1 for the opn_l0_file routine.

Usage:

 opn_l1_file_c(char* instr,char* param,int iuars_day,

 int iver_in,int icyc_max,int itype_in,

 int in_recl,int* icyc,FILE** ifp,

 char* flname,int* ios)

Argument list description:

argument type i/0 description

-------- ---- --- -------------------------------

instr char[12] i instrument acronym.

param char[12] i measure parameter.

iuars_day int i uars day. (e.g., sept 12, 1991

 is uars day 1, jan 1 1992 is

 uars day 112; jan 1 1993 is

 uars day 478)

iver_in int i data version.

icyc_max int i maximum cycle number to try.

itype int i set last 4 characters of input

 file name.

 1: prod

 2: bnbe

 3: bnle

 4: asci

in_recl int i record length (bytes) of file

 if fixed length.

icyc int i/o nominally 0 on input.

 if 0 on input, routine will

 assume an existing file. Cycles

 number will be incremented from

 1 to icyc_max until

 success. if existing file is

 found,icyc is returned.

ifp FILE** o pointer to file pointer

flname char[50] o flname of file.

ios int o status of open.

A.4.2 Level 1 C File Name Function (gen_l1_name_c)

The function routine in file gen_l1_name_c.c generates the file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version. This routine is called only by opn_l1_file_c.c, and users only need to link this routine.

A.4.3 Level 1 Sample C Driver and Link Procedure

The following describes an example of a driver that calls the above routines. Software to open files and generate correct file names based on input such as instrument, subtype, uars day, and data version are also provided for convenience.

A sample driver to use the above functions is provided in file

 get_hrdi_l1_hcdf_ns_c.c

and the compile and link file name is

 get_hrdi_l1_hcdf_ns_c.com

Upon executing this file, an executable is created in file

 get_hrdi_l1_hcdf_ns_c.exe

Use of this C program is similar to that for the corresponding Fortran program described earlier. Details are repeated here for convenience.

Upon running program

 get_hrdi_l1_hcdf_ns_c.exe

interactively, the following prompt appears on the screen:

enter instr,param(lwr case,no quotes)

begin uars day,end uars day

enter first data record number, last data record number

(-1 to do all data records)

file data version

file type (0:vms:prod,2:big endian,3:little endian)

write output to plot (0:no,1:yes)

An example of a user input to this prompt is

hrdi hcdf 122 122 1 100 4 -2 1

The different input variables are separated with blanks. The first string is the hrdi instrument acronym, the second is the subtype acronym. The '122 122' select the begin and end UARS days (there is one file for each day) to read. UARS day number 1 is September 12, 1991; January 1 1992 corresponds to UARS day 112. The input '1 100' selects the first and last data records wanted (in this case the first 100 records). The '4' gives the file data version number, the '-2' is used for the file name generation (2 denotes big endian, and the negative sign denotes variable records). The last input, namely '1' chooses the option to write the portions of the selected records to a text file for analysis. A '0' does not produce a file.

With the above input, the program will read the header record and the first 100 data records of the level 1 data file named

 hrdi_l1_shcdf_d0122.v0004_c01_bvbe

and write a text file named

 hrdi_l1_shcdf_d0122.v0004_c01_asci

that contains certain portions of data from the 100 selected records.

A.5 Additional Level 2 Fortran Software

A.5.1 Level 2 Fortran File Open Routine (opn_l2_file)

The Fortran routine opn_l2_file.for opens a UARS level 2 file with the proper attributes. It calls routine GEN_L2_NAME to generate the needed filename based on input values such as acronyms for the instrument and parameter, for the uars day number, and the data version number, which have been described above. Details are the same as described above in Section A.1.1 for the opn_l0_file routine.

An example of usage is given by the sample driver GET_CLAES_L2_CLAES_NS.FOR.

Usage:

 CALL OPN_L2_FILE(INSTR,PARAM,IUARS_DAY,IVER_IN,

 & ICYC_MAX,ITYPE_IN,IN_RECL,ICYC,LUN,FLNAME,IVAR,

 & IDIRECT,IOS)

Argument list description:

ARGUMENT TYPE I/0 DESCRIPTION

-------- ---- --- -----------------------------------

INSTR CH*12 I INSTRUMENT ACRONYM.

PARAM CH*12 I MEASURE PARAMETER.

IUARS_DAY I*4 I UARS DAY. (E.G., SEPT 12, 1991 IS

 UARS DAY 1, JAN 1 1992 IS UARS

 DAY 112; JAN 1 1993 IS UARS DAY

 478)

IVER_IN I*4 I DATA VERSION NUMBER.

ICYC_MAX I*4 I MAXIMUM DATA CYCLE NUMBER TO TRY.

ITYPE_IN I*4 I USED TO DETERMINE LAST 4 CHARACTERS

 OF FILE NAME:

 0 OR 1: PROD

 2: BNBE

 3: BNLE

 4: ASCI

 ALSO USED FOR CONVERSION IF

 APPLICABLE.

 1: NOCONVERSION

 2: CONVERT = 'BIG ENDIAN'

 3: CONVERT = 'LITTLE ENDIAN'

IN_RECL I*4 I RECORD LENGTH (WORDS) OF

 FILE IF FIXED LENGTH.

 IF VALUE IS GT 0 FILE IS OPENED

 WITH RECL KEYWORD SET TO VALUE OF

 IN_RECL.

 IF VALUE IS ZERO, FILE WILL BE

 OPENED WITHOUT RECL KEYWORD, AND

 DEFAULT IS USED. FOR VARIABLE

 RECORDS,VALUES FOR VMS ARE:

 DEFAULTS:SEGMENTED:2048(BYTES)

 OTHERS:133

ICYC I*4 I/O SHOULD BE NOMINALLY SET TO 0.

 IF 0 ON INPUT, ROUTINE WILL

 TRY TO OPEN EXISTING FILE. CYCLES

 NUMBERS FROM 1 TO ICYC_MAX WIIL BE

 TRIED. IF EXISTING FILE IS FOUND,

 ICYC IS RETURNED. IF FILE NOT

 FOUND,

 ICYC IS INCREMENTED BY 1 UP TO

 ICYC_MAX.

 IF NOT ZERO ON INPUT, FILE IS

 ASSUMED NOT TO EXIST AND A NEW

 FILE IS OPENED

 USING THE VALUE IF ICYC.

LUN I*4 I/O LOGICAL UNIT NUMBER OF FILE.

 IF NOT ZERO ON INPUT, THE INPUT

 VALUE IS USED TO OPEN THE FILE.

 IF ZERO ON INPUT, LUN WILL

 BE SET TO 95 (INPUT) IF ICYC IS 0.

 AND TO 96(OUTPUT) IF ICYC IS NOT 0.

FLNAME CH*50 O FLNAME OF FILE.

IVAR I*4 I IF O, OPEN FOR FIXED RECORD LENGTH

 IF -1, OPEN WITH KEYWORD RECORDTYPE

 SET TO 'SEGMENTED'

 IF -2, OPEN WITH KEYWORD RECORDTYPE

 SET TO 'VARIABLE'

IDIRECT I*4 I INPUT 0:SEQUENTIAL ACCESS,1:DIRECT

IOS I*4 O STATUS AFTER ATTEMPT TO OPEN.

A.5.2 Level 2 Fortran File Name Routine (gen_l2_name)

Routine gen_l2_name (file gen_l2_name.for) generates the correct file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version number. This routine is called only by OPN_L2_FILE.FOR, and users only need to link this routine.

A.5.3 Level 2 Sample Fortran Drivers and Link Procedures

A.5.3.1 Level 2A Sample Fortran Driver and Link Procedure

A sample driver which uses the level 2A access routines and the level 2 file open and file name routines described above is given in file

 get_hrdi_l2a_los_str.for

The command procedure in file

 get_hrdi_l2a_los_str.com

can used to link the relevant files to generate an executable named

 get_hrdi_l2a_los_str.exe

Upon running the executable interactively, the following prompt appears on the screen:

ENTER INSTR(LWR CASE, IN SNGL QUTS),PARAMETER(SNGL QUTS)

BEGIN UARS DAY,END UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER

(-1 FOR EACH TO READ ALL DATA RECORDS)

DATA VERSION

IN FILE TYPE (0,1:VMS,2:BIG ENDIAN,3:LITTLE)

WRITE OUTPUT FILE OF SELECTED DATA?[0/1]

An example of a user input to this prompt is

'hrdi' 'los' 122 122 1 10 10 2 1

The different input variables are separated with blanks. The first string is the hrdi instrument acronym, the is gives the subtype acronym. The '122 122' selects the begin and end UARS days to read (there is one file for each day). UARS day number 1 is September 12, 1991; January 1 1992 corresponds to UARS day 112. The '1 10' selects data records 1 to 10 to read. The '10' gives the file data version number, the '2' is used for the file name generation (2 for big endian). The next to last input, namely '1' chooses the option to write the 10 selected records to a text file for analysis. A '0' does not produce a file.

With the above input, the program will read the level 2A LOS data file named

 hrdi_l2_slos_d0122.v0010_c01_bnbe

and write a text file

 hrdi_l2_slos_d0122.v0010_c01_asci

that contains certain portions of data from the selected records.

A.5.3.2 Level 2B Sample Fortran Driver and Link Procedure

A sample driver which uses the routines to read the level 2b file (subtype PROFILE) is given in file

 get_hrdi_l2b_profile_str.for

and the link file is given in

 get_hrdi_l2b_profile_str.com

Execution of the link file produces an executable in file

 get_hrdi_l2b_profile_str.exe

Upon running the executable interactively, the following prompt appears on the screen:

ENTER INSTR(LWR CASE, IN SNGL QUTS),PARAMETER(SNGL QUTS)

BEGIN UARS DAY,END UARS DAY

ENTER FIRST DATA RECORD NUMBER, LAST DATA RECORD NUMBER

(-1 FOR BOTH TO DO ALL DATA RECORDS)

FILE DATA VERSION,

FILE TYPE(0:VMS .PROD,1:VMS PRO0,-1:PROV,2:BIG ENDIAN,3:LITTLE)

WRITE SELECTED DATA TO PLOT?[0:NO,1:YES]

An example of a user input to this prompt is

'hrdi' 'profile' 122 122 1 10 10 2 1

The different input variables are separated with blanks. The first string is the hrdi instrument acronym, the second is the subtype acronym. The '122 122' selects the begin and end UARS days to read (there is one file for each day). UARS day number 1 is September 12, 1991; January 1 1992 corresponds to UARS day 112. The '1 10' selects data records 1 to 10 to read. The '10' gives the file data version number, the '2' is used for the file name generation (2 for big endian). The next to last input, namely '1' chooses the option to write the 10 selected records to a text file for analysis. A '0' does not produce a file.

With the above input, the program will read the level 2 ozone data file named

 hrdi_l2_sprofile_d0122.v0010_c01_bnbe

and write a text file

 hrdi_l1_sprofile_d0122.v0010_c01_asci

that contains certain portions of data from the selected records.

A.6 Additional Level 2 C Software

Users can use the above C routines to access to the HRDI level 2A and 2A data. For convenience, an example of a driver that calls these routines is also provided, along with routines that generate file names and opens the files.

A.6.1 Level 2 C File Open Code (opn_l2_file_c)

The C function routine opn_l2_file_c (file opn_l2_file_c.c) opens a UARS level 2 file with the proper attributes. It calls function gen_l2_name_c (file gen_l2_name_c.c) to generate the file name based on input values such as acronyms for the instrument and the parameter, for the uars day number, and the data version number, which have been described above. Details are the same as described above in Section A.1.1 for the opn_l0_file routine.

Usage:

 opn_l2_file_c(char* instr,char* param,int iuars_day,int

 iver_in,int icyc_max,int itype_in,int in_recl,int*

 icyc,FILE** ifp,char* flname,int* ios)

Argument list description:

argument type i/0 description

-------- ---- --- --------------------------

instr char[12] i instrument acronym.

param char[12] i measure parameter.

iuars_day int i uars day. (e.g., sept 12,

 1991 is uars day 1, jan 1

 1992 is uars day 112;

 jan 1 1993 is uars day

 478)

iver_in int i data version.

icyc_max int i maximum cycle number to

 try.

Itype int i set last 4 characters of

 input file name.

 1: prod

 2: bnbe

 3: bnle

 4: asci

in_recl int i record length (bytes) of

 file if fixed length.

icyc int i/o nominally 0 on input.

 if 0 on input, routine

 will assume

 an existing file. Cycles

 number will be incremented

 from 1 to icyc_max until

 success. if existing

 file is found, icyc is

 returned.

ifp FILE** o pointer to file pointer

flname char[50] o flname of file.

ios int o status of open.

A.6.2 Level 2 C File Name Function (gen_l2_name_c)

Function gen_l2_name_c (file gen_l2_name_c.c) generates the correct file name based on input values of the instrument and subtype acronyms, the UARS day number, and the file data version. This routine is called only by opn_l2_file_c.c, and users only need to link this routine.

A.6.3 Level 2 Sample C Drivers and Link Procedures

A.6.3.1 Level 2A Sample C Driver and Link Procedure

A sample C driver which uses the routines

 fth_rd_l2b_hdr_str_c

 fth_rd_l2ascan_str_c

is given in file

 get_hrdi_l2a_los_str_c.c

and the compile and link file is given in

 get_hrdi_l2a_los_str_c.com

Execution of the link file produces an executable in file

 get_hrdi_l2a_los_str_c.exe

Use of this C program is similar to that for the corresponding Fortran program described earlier. Details are repeated here for convenience.

Upon running the executable interactively, the following prompt appears on the screen:

enter instr,param(lwr case,no quotes)

begin,end uars day

enter first data record number, last data record number

(negative to do all data records)

data version

in file type (default:0 for .prod)

2:big endian,3:little endian

write output (0:no,1:yes)

An example of a user input to this prompt is

'hrdi' 'los' 122 122 1 10 10 2 1

The different input variables are separated with blanks. The first string is the hrdi instrument acronym, the second is the subtype acronym. The '122 122' selects the begin and end UARS days to read (there is one file for each day). UARS day number 1 is September 12, 1991; January 1 1992 corresponds to UARS day 112. The '1 10' selects data records 1 to 10 to read. The '10' gives the file data version number, the '2' is used for the file name generation (2 for big endian). The next to last input, namely '1' chooses the option to write the 10 selected records to a text file. A '0' does not produce a file.

With the above input, the program will read the level 2A LOS data file named

 hrdi_l2_slos_d0120.v0010_c01_bnbe

and write a text file

 hrdi_l1_slos_d0120.v0010_c01_asci

that contains certain portions of data from the selected records.

A.6.3.2 Level 2B Sample C Driver and Link Procedure

A sample driver to use the above level 2B functions is given in file

 get_hrdi_l2b_profile_str_c.c

and the compile and link file is given in

 get_hrdi_l2b_profile_str_c.com

Execution of the link file produces an executable in file

 get_hrdi_l2b_profile_str_c.exe

Use of this C program is similar to that for the corresponding Fortran program described earlier. Details are repeated here for convenience.

Upon running the executable interactively, the following prompt appears on the screen:

enter instr,param(lwr case,no quotes)

begin uars day,end uars day

enter first data record number, last data record number

(negative to do all data records)

data version

in file type (def:0:.prod,2:big endian,3:little endian)

write output (0:no,1:yes)

An example of a user input to this prompt is

hrdi los 120 120 1 10 11 2 1

The different input variables are separated with blanks. The first string is the hrdi instrument acronym, the second is the subtype acronym. The input '120 120' selects the begin and end UARS days to read (there is one file for each day). UARS day number 1 is September 12, 1991 January 1 1992 corresponds to UARS day 112. The '1 10' selects data records 1 to 10 to read. The '12' gives the file data version number, the '2' is used for the file name generation (big endian). The next to last input, namely '1' chooses the option to write the 10 selected records to a text file for analysis. A '0' does not produce a file.

With the above input, the program will read the level 2 ozone data file named

 hrdi_l2_sprofile_d0120.v0011_c01_bnbe

and write a text file

 hrdi_l2_sprofile_d0120.v0011_c01_asci

that contains certain portions of data from the selected records.

PAGE
1

