
Precipitation Processing System (PPS)

Tropical Rainfall Measuring Mission (TRMM)

[image: image1.png]PPS




PPS Science Algorithm Input/Output Toolkit

Programmer’s Guide
FORTRAN Version

Version 2.00

Prepared By:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GODDARD SPACE FLIGHT CENTER

Code 610.2/PPS

Greenbelt, Maryland  20771

November 2009

Table of Contents

1-11.0
INTRODUCTION


1-11.1
Installation


1-21.2
Toolkit Hints


1-51.3
Important Considerations


2-12.0
Science Algorithm TOOLKIT CATEGORIES


2-12.1
Input/Output


2-22.2
Error Processing


2-22.3
Geolocation


3-13.0
PPS TKIO ROUTINE SPECIFICATION FOR TRMM


3-13.1
Routine Specification, FORTRAN Functions


3-2TKclose ()


3-4TKendOfFile ()


3-6TKgetMetaFloat ()


3-8TKgetMetaInt ()


3-10TKgetMetaString ()


3-12TKgetScanCount ()


3-14TKmessage ()


3-16TKopen ()


3-19TKreadGrid ()


3-21TKreadMetaFile ()


3-24TKreadScan ()


3-26TKreadStruct ()


3-28TKseek ()


3-31TKsetMetaFloat ()


3-33TKsetMetaInt ()


3-35TKsetMetaString ()


3-37TKtransferMetaData ()


3-40TKwriteGrid ()


3-42TKwriteMetaFile ()


3-45TKwriteScan ()


3-47TKwriteStruct ()


3-493.2
TRMM Specific Helper Routines and Files


3-493.2.1
FORTRAN Helper Functions


3-493.2.2
Error Mnemonic Files


4-14.0
Parameter Dictionary


4-14.1
Structure Types


4-14.2
Modes for TKopen


4-14.3
General Return Status


4-24.4
Type of Offsets for TKseek


4-24.5
Metadata Information



APPENDIX A.  TRANSITION FROM TSDIS TOOLKIT TO PPS TKIO
A-1
APPENDIX B.  TKIO README
B-1
APPENDIX C.  TKIO FREQUENTLY ASKED QUESTIONS (FAQ)
C-1
APPENDIX D.  TKIO CODE NOTES
D-1
1.0 INTRODUCTION

The purpose of the Science Algorithm Input/Output Toolkit (TKIO) is twofold.  First, the Toolkit provides a set of commonly used routines and constants for algorithm developers and researchers.  These commonly used items have been placed in the Science Algorithm Input/Output Toolkit to reduce the amount of parallel code development.  By taking care of low-level details, the PPS TKIO can greatly simplify the I/O code that algorithm developers and researchers need to write.

The routines are designed to be easily used by algorithm developers and researchers at their home institutions.  This means that the routines contain basic functionality that will be used by most algorithm developers and researchers.

The second purpose of the Science Algorithm Input/Output Toolkit is to allow seamless integration of Tropical Rainfall Measuring Mission (TRMM) algorithms into the Precipitation Processing System (PPS) environment.  Since PPS treats the delivered algorithms as black boxes, it is essential that the interfaces with PPS be well defined and consistent across algorithms.  Thus, the Science Algorithm Toolkit development has concentrated on those routines that are essential to interaction with the PPS environment.  Throughout the TRMM era, this purpose of the Toolkit has been fulfilled and has eased the integration of the science algorithm code into the production environment.

Section 2 provides descriptions of the categories of Science Algorithm Toolkit routines, the routines that are found in each category, and a general outline of how the routines can be used together.  This is followed in Section 3 by a description of each routine, along with simple examples of how the routines are used.  Section 4 provides a Parameter Dictionary and a description of the metadata (for additional metadata information, reference the following two documents: filespec.TRMM.V7.pdf and filespecMeta.TRMM.V7.pdf, available on the PPS anonymous FTP site, in the /v7filespec directory).

1.1 Installation

To install the TKIO package, first obtain the tkio.tar file from:

ftp://web.pps.eosdis.nasa.gov/pub/PPStoolkit/CURRENT_RELEASE
Untar the file.  Make sure to follow the directions in the README file.  There are several environmental variables that need to be set before running the INSTALL.pl script.

In general, you will need the following:

1. Perl (in order to run the install script).

2. A preinstalled format library; for example, HDF.

3. A FORTRAN and/or C compiler.

4. If you are building new read/write code, you will need JAVA.  If the read/write code has been built, you do not need JAVA.

Hardware/OS:  Linux 32-bit or 64-bit.  Minimum memory depends on algorithm data requirements.  Minimum for TRMM V7 algorithms is 3GB usable.  Tested and known working with Red Hat Enterprise Linux (RHEL) 4.x and 5.x, and compatible variants (i.e., CentOS).  Should work with any Linux OS with kernel >= 2.6.9 and glibc >= 2.3.4.

Compilers:  1) GCC, and 2) Intel FORTRAN (used at PPS and recommended).  Limited testing with PGI FORTRAN indicates that TKIO will work with minor changes.

Memory Model Compiler Options:  Applications (algorithms) built against the TKIO and HDF libraries that require 2GB or more of data space should be built with the medium memory model.  This model is supported by GCC, Intel, and PGI.  If the application requires the medium memory model, both TKIO and HDF should be built with that memory model as well.  The default build of TKIO FORTRAN includes mcmodel=medium for the Intel FORTRAN compiler.  If you also require medium memory model for C, add the option to the CC environment variable prior to compiling TKIO.  HDF should be built with the medium memory model for BOTH C and FORTRAN, regardless of which TKIO language is used.  TKIO and HDF libraries built with the medium memory model can be used for applications compiled with the medium or default (lower) memory models.

When building a FORTRAN application requiring the medium memory model with the Intel FORTRAN compiler, the -shared-intel switch must also be used, as this instructs the compiler to use the Intel shared runtime libraries that allow relocation past 2GB.  Another option would be to compile the Intel static libraries with -fPIC on installation.

1.2 Toolkit Hints
There are a couple of important points that should be noted when installing and using the PPS Science Algorithm Toolkit.  In the makefile provided with the release of the Science Algorithm I/O Toolkit, the paths that point to the various included files, such as hierarchical data format (HDF), will have to be changed by users to point to the HDF distribution directories on their computer systems.  Follow the installation instructions included in the makefile for details on how to do this.

When a file is opened as a new file, the metadata will be initialized for that product using default values from metadata configuration files.  The programmer can change these values using the Toolkit metadata access routines.

In order to create an executable file with the new TKIO, see the Makefile FORTRAN example below, as well as the swath and grid examples that follow:

Makefile FORTRAN
# This is an example; you may have to modify it.

# HDF sometimes requires the jpeg and sz libs.

# USAGE: make FILE=<filename>

# example 'make FILE=read2A25' creates read2A25 executable.

# Executable Name

EXE_NAME = $(FILE)

CODE = fortcode

# Include Files

INC = -I$(HDF4_INC) \

           -I$(TKIO)/inc/fortcode \

           -I/home/asigmund/formats/szip/szip2-linux2.6-enc/include

LIB = -L$(HDF4_LIB) \

           -L$(TKIO)/lib \

           -L/home/asigmund/formats/szip/szip2-linux2.6-enc/lib

LIBES = -ltkfortTSDIS -ltkfortselect -ltkforthdf4algs -ltkforthdf4 -ltkfortbinaryalgs 

-ltkfortbinary -ltkfort -lm -lmfhdf -ldf -ljpeg -lz -lsz

# Compiler Macros

#CC = pgf77

CFLAGS = $(TKDEBUG)

COMPILE = -c

# Objects

OBJS = \

$(FILE).o

# Link Definition

$(EXE_NAME): $(OBJS)


$(FORTC) $(CFLAGS) -o $@ $(OBJS) $(INC) $(LIB) $(LIBES)

# Compiles

$(FILE).o: $(FILE).f


$(FORTC) $(COMPILE) $(CFLAGS) $(INC) $(FILE).f

clean:


-rm $(FILE).o


-rm $(FILE)

Test F 2A25 (Swath Example)
  Program test

  implicit none

  INCLUDE 'TKHEADERS.h'

  INCLUDE 'TK_2A25.h'

  RECORD /TKINFO/ tkinfo

  RECORD /TKINFO/ newtkinfo

  RECORD /METADATA/ tsdismeta /* Use only for TSDIS V6 files*/
  RECORD /L2A25_CLUTTER/ dL2A25_CLUTTER(49)

  COMMON /L2A25_CLUTTER/ dL2A25_CLUTTER

  RECORD /L2A25_SWATH/ dL2A25_SWATH

  COMMON /L2A25_SWATH/ dL2A25_SWATH

  character*100 tsdisfilename

  integer*4 ret, nscans, ic

  tsdisfilename='/home/asigmund/data/2A25.080414.59334.6.HDF'

  CALL TKopen ( tsdisfilename, '2A25', TKREAD, 'HDF4', 'jobid', tkinfo, ret )

  CALL TKopen ( '/home/asigmund/data/L2A25.HDF', '2A25', TKWRITE, 'HDF4',

  &'jobid', newtkinfo, ret )

  CALL TKinitTSDIS ( tkinfo, tsdismeta ) /* Use only for TSDIS V6 files*/
  CALL TKgetMetaInt ( tkinfo, 'SwathHeader', 'NumberScansGranule', nscans, ret)

  CALL TKreadStruct ( tkinfo, 'L2A25_CLUTTER', ret )

  CALL TKwriteStruct ( newtkinfo, 'L2A25_CLUTTER', ret)

  do 100 ic=1, nscans

       CALL TKreadScan ( tkinfo, ret )

       CALL TKwriteScan ( newtkinfo, ret )

100 continue

997 CALL TKclose ( tkinfo, ret )

       CALL TKclose ( newtkinfo, ret )

999 stop

      end

Test F 3A26 (Grid Example)

  Program read3A26

  implicit none

  INCLUDE 'TKHEADERS.h'

  INCLUDE 'TK_3A26.h'

  RECORD /METADATA/ tsdismeta /* Use only for TSDIS V6 files*/
  RECORD /TKINFO/ tkinfo

  RECORD /TKINFO/ newtkinfo

  RECORD /L3A26_GRID/ grid

  COMMON /L3A26_GRID/ grid

  character*100 infile, outfile

  integer*4 ret

  infile='/home/asigmund/data/3A26.060801.6.HDF'

  outfile='/home/asigmund/data/L3A26.HDF'

  CALL TKopen ( infile, '3A26', TKREAD, 'HDF4', 'jobid', tkinfo, ret )

  CALL TKopen ( outfile, '3A26', TKWRITE, 'HDF4', 'jobid', newtkinfo, ret )

/* TKinitTSDIS must be called AFTER TKopen if reading a TSDIS file. */

  CALL TKinitTSDIS ( tkinfo, tsdismeta )

  CALL TKreadGrid ( tkinfo, ret )

  CALL TKwriteGrid ( newtkinfo, ret )

  CALL TKclose ( tkinfo, ret )

  CALL TKclose ( newtkinfo, ret )

999 stop

       end
1.3 Important Considerations

In this version of the PPS I/O Toolkit, all FORTRAN routines are native.  That is, they are now not merely wrapped C routines accessible through a FORTRAN function header but are actual F77 with extensions code.  There are both advantages and disadvantages to this approach from the data system perspective.  However, it will seem more natural to users should they look at the actual Toolkit routines.  Currently the PPS TKIO is guaranteed to work only under the Intel FORTRAN compilers in Linux.

Unlike the previous TRMM Science Data and Information System (TSDIS) Toolkit, the PPS TKIO FORTRAN routines are all subroutines.  They are not functions and therefore cannot return a value.  As a result, the return value is always a parameter sent in on the call.  Additionally, the call statement must be used for all TKIO routines when using FORTRAN.

The PPS TKIO is efficient regarding processing overhead.  However, because of the way that structures (records) are allocated, TKIO requires a great deal of memory.  TKIO cannot be used on systems with limited memory.

To ensure that the PPS TKIO would be easy to compile and use with a wide variety of data from Global Precipitation Measurement (GPM) Mission partners, it was kept very generic.  The basic philosophy is to handle only those aspects of data format and access that could be specified in configuration files that contain the logical format descriptions.  As a result, TRMM-specific actions were not included as routines within the Toolkit.  Instead, some of these routines were written to the TRMM standard and included as helper routines.

The TSDIS Toolkit performed many actions automatically, which required hard-coding those actions within more generic routines.  This led not only to configuration management problems as TRMM formats changed, but also led to side effects that the user did not necessarily know about.  In the PPS TKIO, the general ideology is to provide routines to perform generic actions and have the programmer call these specifically, thereby avoiding hidden automatic actions.

For more details, refer to the following four appendices at the end of this document:

1. Appendix A, Transition from TSDIS Toolkit to PPS TKIO:  Information for Algorithm Developers and Researchers Using the C Interface
2. Appendix B, TKIO README

3. Appendix C, TKIO Frequently Asked Questions (FAQ)

4. Appendix D, TKIO Code Notes

Additional quick-reference documentation is available in the Documents subdirectory in the TKIO installation.  These files include test code for 1B11, 2A25, and 3A26, as well as updates to TKIO README, TKIO FAQ, and TKIO Code Notes.

For algorithm developers and researchers wanting to display TRMM products without having first to install the HDF library and TKIO, PPS provides a data viewer.  The data viewer can be downloaded from the PPS Web site at http://pps.gsfc.nasa.gov.
2.0 Science Algorithm TOOLKIT CATEGORIES

There are three basic categories of Science Algorithm Toolkit routines:  Input/Output, Error Handling, and Geolocation.  Detailed descriptions of I/O and error routines can be found in Section 3, PPS TKIO Routine Specification for TRMM.  Section 3.1 contains routine descriptions for programmers, and Section 3.2 contains descriptions of helper routines.  Brief descriptions of the routines follow.

2.1 Input/Output

The Input and Output routines are designed to make it easy for algorithm developers and researchers to access TRMM data.  The routines are listed below, and fall into several classes: File Access, Data Access (Scan), Data Access (Grid), Metadata Access, and Header Access.

File Access:
TKopen, TKseek, TKclose, TKendOfFile

TKopen opens a file for reading or writing.  TKclose closes a file.  TKseek moves the file pointer to a specified scan in the file.  TKendOfFile signals when an end-of-file condition has been reached.

Data Access: 
TKreadScan, TKwriteScan

(Scan)

TKreadScan reads a single scan from an opened file containing scan-based satellite data.  TKwriteScan writes a single scan to an opened file containing scan-based satellite data.

Data Access:
TKreadGrid, TKwriteGrid

(Grid)

These routines read and write data for Level 3 grid-based satellite data products.

Metadata

Access:
      TKgetMetaString, TKsetMetaString, TKgetMetaFloat,

TKsetMetaFloat, TKgetMetaInt, TKsetMetaInt

There is a separate metadata routine for Character/String, Floating Point, and Integer data types.  The TKgetMetaTYPE routines read a single metadata element into a typed variable.  The TKsetMetaTYPE routine writes a single metadata element to a file.  Since the metadata are stored internally as characters, these routines translate from or to the appropriate type.

Metadata

Transfer:
TKtransferMetaData

This routine copies metadata from the metadata in an input file.  The input file must have been written by TKIO.  Not all metadata is copied.  Only metadata that has been flagged in the configuration files is copied.  This routine is generally used to transfer metadata from Level 1 to Level 2 products.
Intermediate

Metadata:
TKreadMetaFile, TKwriteMetaFile
TKreadMetaFile and TKwriteMetaFile functions are used by the Level 3 TRMM algorithms to pass metadata information between code executions.  Each code execution of a Level 3 algorithm operates on a single orbit to accumulate time and space averaged quantities.  During each code execution, the metadata from the input files is written to an intermediate metadata file that accumulates the information.  On the last execution of the algorithm that creates an output product file, the intermediate metadata information is read and placed into the output structure.  Usage and examples are given below:

int TKwriteMetaFile ( char *intermMetafile, TKINFO *tkInfoInput, TKINFO
*tkInfoOutput )

int TKreadMetaFile ( char *intermMetafile, TKINFO *tkInfoOutput )

Example use in 3A12:

status = TKwriteMetaFile ( intermMetaFile, &tkInfo2A12, &tkInfo3A12 ); 

status = TKreadMetaFile ( intermMetaFile, &tkInfo3A12 );

During BEGIN, MIDDLE, or END execution, call TKwriteMetaFile:
status = TKwriteMetaFile ( intermMetaFile, &tkInfo2A12, &tkInfo3A12 );

On the END execution, call TKreadMetaFile:
status = TKreadMetaFile ( intermMetaFile, &tkInfo3A12 );
Header Access:
TKreadStruct, TKwriteStruct


TKreadStruct and TKwriteStruct are generic routines that read and write structures.  They may be used to read the ray header for PR L1B21 and L1C21 data products, and read and write clutter flags for L2A25 PR data products.

2.2 Error Processing

A major change in the PPS TKIO vis-à-vis the previous TSDIS Toolkit is in the area of error handling.  The PPS TKIO provides only a single error, warning, or information-handling service TKmessage.  The service no longer requires the use of pre-established error mnemonics.  Instead, users may send any string that they wish.  This approach allows algorithm developers and researchers to build strings that contain actual program values that they wish to display.

2.3 Geolocation

The details of the geolocation routines are contained in a separate document describing the geolocation functions.

3.0 PPS TKIO ROUTINE SPECIFICATION FOR TRMM

This section includes a detailed description of each routine contained in the PPS TKIO.  Each routine description explains the purpose of the routine, the calling sequence, and the input and output parameters.  A more detailed description of some parts of the routine is followed by a simple example of how the routine is used in working code.  Each description ends by listing any prerequisites for using the routine (e.g., opening a file is a prerequisite to reading a scan of data).

The documentation of each routine contains the following:

Function Name:
The name of the routine.

Description:
A brief description of what the routine does.

Usage:
Example of the declaration and calling sequence of the routine.

Input:
List and description of input parameters.

Output:
List and description of output parameters.

Details:
Relevant details of how the routine works and where to find more information.

Examples:
Short examples of how to use the routine in real code.

Return Values:
A brief list of common return values.

Prerequisites:
Explanations of what other routines need to be used in conjunction with the current routine.

In Section 3.1, all of the routines are listed in alphabetical order and are discussed with explanations of how to call them from FORTRAN programs.

This section is followed by the Parameter Dictionary, which contains descriptions of each of the parameters used in the Toolkit routines.

3.1 Routine Specification, FORTRAN Functions
This section describes each of the FORTRAN Functions in the PPS TKIO; the format of the descriptions of each function is presented in Section 3.  In the usage section, the input parameters are shown in italics type and the output parameters are shown in boldface type.

TKclose ()

Function Name:
TKclose ()

Description:
This routine closes a PPS standard data product file.  The data product must have been opened by TKopen.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKclose ( granuleHandle, status )


RECORD/TKINFO/granuleHandle
Input:
granuleHandle

A quasi "file pointer" of the file to be closed; granuleHandle is initialized in TKopen.

Output:
status

Returns the result of the action.  This will either be TK_SUCCESS or TK_FAIL.

Details:
Unlike binary files, all HDF files must be closed before exiting the application.  If HDF files are not closed, data will be lost.

Examples:
This example will use the TKclose routine to close a 1B11 data product.  This example also shows how to open a file; refer to TKopen in the documentation for an explanation of that routine.  This example assumes that the jobname was sent in as the first argument on the command line.

TKclose () (Continued)


PROGRAM TKCLOSEEXAMPLE

INCLUDE 'TKHEADERS.h'



INCLUDE 'TK_1B11.h'




RECORD/TKINFO/granuleHandle





RECORD/LIB11_SWATH/





COMMON/LIB11_SWATH/





INTEGER status





CHARACTER*255 jobname



            call getargs ( 1, jobname )

C
Open the file for reading.



call TKopen ( '1B11.980204.100.1.HDF', '1B11', 'HDF4', TKREAD,

>
      

jobname, granuleHandle, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF

C
Here the work is done.



call TKclose ( granuleHandle, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



STOP



END

Return Values:
None.

Prerequisites:
Before closing the file by calling TKclose, the file should have been opened by calling TKopen.

TKendOfFile ()

Function Name:
TKendOfFile ()

Description:
This routine determines the number of records in an HDF file and returns TK_EOF when an end-of-file condition is reached.  When reading a TRMM Microwave Imager (TMI) file with overlap, this routine returns TK_EOO at the end of the orbit, i.e., before the start of the post-overlap region, and TK_EOF at the physical end of the file.

Usage:
INCLUDE 'TKHEADERS.h'

INTEGER FUNCTION TKendOfFile ( granuleHandle )


RECORD/TKINFO/granuleHandle
Input:
granuleHandle



The "file pointer" for the data file; granuleHandle is initialized in TKopen.

Output:
None.

Details:
If not in TKREAD mode, return W_TK_BADMODEEF.  If no swaths exist, return TK_EOF.  If the swath is empty, return W_TK_EMPTYHDFEF.  If at the end of all scans in the swath, return TK_EOF.  If at the end of the orbit, return TK_EOO.  Otherwise, return TK_FAIL.


This routine correctly accounts for changes in the record pointer caused by calls to TKseek.

Examples:
This example will use the TKendOfFile routine to read each scan in a 1B11 product.  When the end-of-file condition has been reached, the program will stop processing.  The end-of-orbit condition is indicated.



PROGRAM TKENDOFFILEEXAMPLE



INCLUDE 'TKHEADERS.h'


INCLUDE 'TK_L1B11.h'



RECORD/TKINFO/granuleHandle




RECORD/L1B11_SWATH/data




COMMON/LIB11_SWATH/.data




INTEGER status




INTEGER I, TKendOfFile



CHARACTER*255 jobname
TKendOfFile () (Continued)




call getargs ( 1, jobname )




i = 1

C

Open the file for reading.



call TKopen ( '1B11.980204.100.1.HDF', '1B11', 'HDF4', TKREAD,

>
      

jobname, granuleHandle, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF

C

When an end-of-file condition is reached, then stop processing.




DO WHILE ( TKendOfFile ( granuleHandle ) .NE. TK_EOF )





WRITE (*,*)'Scan: ', i





i = i + 1





call TKreadScan ( granuleHandle, status )





IF ( TKendOfFile ( granuleHandle ) .EQ. TK_EOO )

>

        

THEN






WRITE (*,*) 'End of Orbit...Starting Overlap. '




END IF




END DO




call TKclose ( granuleHandle, status )




STOP




END

Return Values:  
TK_EOF
End-of-file condition has been reached.


TK_EOO
The end of the orbit has been encountered for a TMI 




(i.e., overlap) file.


TK_FAIL
End-of-file condition has not been encountered.

Prerequisites: 
Before calling TKendOfFile, the file corresponding to granuleHandle must have been previously opened for reading by calling TKopen.

TKgetMetaFloat ()

Function Name:
TKgetMetaFloat ()

Description:
This routine reads floating point metadata items from a TRMM standard data product.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKgetMetaFloat ( granuleHandle, metaName, elementName, value, status )


RECORD/TKINFO/granuleHandle


CHARACTER *(*) group

CHARACTER*(*) element

REAL value

INTEGER status
Input:
granuleHandle

A structure containing information about the data product.  granuleHandle is initialized in TKopen.  granuleHandle is similar to a file pointer.

metaName

Metadata elements are placed into larger groupings based upon their role within the metadata.  Refer to the file specification document for the appropriate metadata grouping name.


elementName

The name of the metadata element that is read from the file.  Refer to the file specification for the metadata element names.

Output:
value

A floating point value corresponding to the metadata element specified by metaName and elementName.


status


Returns status of the routine action: TK_SUCCESS or TK_FAIL.

TKgetMetaFloat () (Continued)

Details:
All metadata are stored internally in character format.  The floating point metadata access routines translate the character data to a floating point format.

Examples:
This example will use the TKgetMetaFloat routine to read the solar beta angle at the start of the granule from a 1B11 product and print the value.


PROGRAM TKGETMETAFLOATEXAMPLE


INCLUDE 'TKHEADERS.h'


RECORD/TKINFO/granuleHandle1B11



REAL beta



INTEGER status

CHARACTER*(*) jobname
call getargs ( 1, jobname )

C
Open the file for reading.



call TKopen ( '1B11.980201.100.1.HDF', '1B11', 'HDF4', TKREAD,

>
      

jobname, granuleHandle1B11, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKgetMetaFloat ( granuleHandle1B11, 


      

'NavigationRecord',

>

'SolarBetaAngleAtBeginningOfGranule',

>

beta, status )



IF ( status .EQ. TK_SUCCESS ) THEN




WRITE (*,*) 'Solar Beta: ', beta



ENDIF



call TKclose ( granuleHandle1B11, status )



STOP



END

Return Values:
None.

Prerequisites:
Before calling TKgetMetaFloat, a data product must be opened for reading by calling TKopen.  When the data product is no longer needed, it should be closed by calling TKclose.

TKgetMetaInt ()

Function Name:
TKgetMetaInt ()

Description:
This routine reads integer metadata items from a TRMM standard data product.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKgetMetaInt ( granuleHandle, metaName, elementName, value, status )


RECORD/TKINFO/granuleHandle


CHARACTER *(*) group

CHARACTER*(*) element

INTEGER value


INTEGER status
Input:
granuleHandle

A structure containing information about the data product.  granuleHandle is initialized in TKopen.  granuleHandle is similar to a file pointer.

metaName

Metadata elements are placed into larger groupings based upon their role within the metadata.  Refer to the file specification document for the appropriate metadata grouping name.


elementName

The name of the metadata element that is read from the file.  Refer to the file specification for the metadata element names.

Output:
value

An int value corresponding to the metadata element specified by metaName and elementName.


status


Returns status of the action: TK_SUCCESS or TK_FAIL.

TKgetMetaInt () (Continued)

Details:
All metadata are stored internally in character format.  The floating point metadata access routines translate the character data to a floating point format.

Examples:
This example will use the TKgetMetaInt routine to read the orbit number from a 1B11 product and print the value.


PROGRAM TKGETMETAINTEXAMPLE


INCLUDE 'TKHEADERS.h'


RECORD/TKINFO/granuleHandle1B11



INTEGER orbNum



INTEGER status

CHARACTER*(*) jobname
call getargs ( 1, jobname )

C
Open the file for reading.



call TKopen ( '1B11.980201.100.1.HDF', '1B11', 'HDF4', TKREAD,

>
      

jobname, granuleHandle1B11, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKgetMetaInt ( granuleHandle1B11, 


      

'FileHeader',

>

'GranuleNumber',

>

orbNum, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR, 
>


'message to print' )



ENDIF



WRITE (*,*) 'Orbit Number: ', orbNum



call TKclose ( granuleHandle1B11, status )



STOP



END

Return Values:
None.

Prerequisites:
Before calling TKgetMetaInt, a data product must be opened for reading by calling TKopen.  When the data product is no longer needed, it should be closed by calling TKclose.
TKgetMetaString ()

Function Name:
TKgetMetaString ()

Description:
This routine reads character metadata items from a TRMM standard data product.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKgetMetaString ( granuleHandle, metaName, elementName, value, status )


RECORD/TKINFO/granuleHandle

CHARACTER *(*) group

CHARACTER*(*) element

CHARACTER*(*) value


INTEGER status
Input:
granuleHandle

A structure containing information about the data product.  granuleHandle is initialized in TKopen.  granuleHandle is similar to a file pointer.

metaName

Metadata elements are placed into larger groupings based upon their role within the metadata.  Refer to the file specification document for the appropriate metadata grouping name.


elementName

The name of the metadata element that is read from the file.  Refer to the file specification for the metadata element names.

Output:
value

The character value corresponding to the metadata element specified by metaName and elementName.


status


Returns result of routine action: TK_SUCCESS or TK_FAIL.

TKgetMetaString () (Continued)

Details:
All metadata are stored internally in character format.

Examples:
This example will use the TKgetMetaString routine to read the algorithm version from a 1B11 product and print the value.


PROGRAM TKGETMETASTRINGEXAMPLE


INCLUDE 'TKHEADERS.h'


RECORD/TKINFO/granuleHandle1B11



CHARACTER*(*) algVers



INTEGER status

CHARACTER*(*) jobname
call getargs ( 1, jobname )

C
Open the file for reading.



call TKopen ( '1B11.980201.100.1.HDF', '1B11', 'HDF4', TKREAD,

>
      

jobname, granuleHandle1B11, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKgetMetaString ( granuleHandle1B11, 

>
      

'FileHeader', 'AlgorithmVersion', algVers, status )



IF ( status .EQ. TK_SUCCESS ) THEN




WRITE (*,*) 'Algorithm Version: ', algorithmVers



ENDIF



call TKclose ( granuleHandle1B11, status )



STOP



END

Return Values: 
None.

Prerequisites:
Before calling TKgetMetaString, a data product must be opened for reading by calling TKopen.  When the data product is no longer needed, it should be closed by calling TKclose.

TKgetScanCount ()
Function Name:
TKgetScanCount ()

Description:
This routine returns the number of scans read or written.

Usage:
INCLUDE 'TKHEADERS.h'

INTEGER*4 FUNCTION TKgetScanCount ( *granuleHandle, swathName ); 


RECORD/TKINFO/granuleHandle


CHARACTER *(*) swathName
Input:
granuleHandle

A structure containing information about the data product.  granuleHandle is initialized in TKopen.  granuleHandle is similar to a file pointer.


swathName


The name of the swath for which scan count is requested.

Output:
This function returns the current scan count for the swathName.

Details:
This function returns -1 on error.  It returns 0 if no scans have been read or written, or if the file pointer is at the beginning of the scans.  Otherwise, it returns a positive number.  Overlap scans are included in the count.
Examples:
This example will use the TKgetScanCount function to get the scan count for a file.

TKgetScanCount () (Continued)


PROGRAM TKGETSCANCOUNTEXAMPLE


INCLUDE 'TKHEADERS.h'


RECORD/TKINFO/granuleHandle1B11



INTEGER scancount



INTEGER status

CHARACTER*(*) jobname
call getargs ( 1, jobname )

C
Open the file for reading.



call TKopen ( '1B11.980201.100.1.HDF', '1B11', 'HDF4', TKREAD,

>
      

jobname, granuleHandle1B11, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



scancount = TKgetScanCount ( granuleHandle1B11, 'SwathData' )


IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



WRITE (*,*) 'ScanCount ', scancount


call TKclose ( granuleHandle1B11, status )



STOP



END

Return Values:
-1, 0, or a positive number.
Prerequisites:
Before calling TKgetScanCount, a data product must be opened for reading by calling TKopen.  When the data product is no longer needed, it should be closed by calling TKclose.

TKmessage ()

Function Name:
TKmessage ()

Description:
This routine displays a user's desired message on the standard output display.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKmessage ( jobname, MSGTYPE, message )


CHARACTER*(*) jobname

CHARACTER*(*) MSGTYPE

CHARACTER*(*) message

Input:
jobname

A string sent in as the first argument on the command line activating the program.  In the algorithm developers' and researchers' environment, this may be any string that they desire.  The jobname is also stored in the TKINFO structure.  If there is a declaration of 'TKINFO granuleHandle' then 'granuleHandle.jobname' can be accessed.
MSGTYPE

A value denoting the severity of the message being displayed.  The current allowable values are:

TKERROR

TKWARN

TKINFORM

TKOPER

message

A string containing the message that should be displayed on the standard output display.  This can be any string that contains meaningful information for the person monitoring the execution of the program.  The generic nature of the routine allows users to provide any information in the string that they desire.

Output:
None.

Details:
It is important that message contain useful information to help in diagnosing the state of the execution.  To assist TRMM users, the former message mnemonics have been made available; see the section on error mnemonic functions.  All TKmessages are printed to stderr, not stdout.  This is so there is no interference with stdout from algorithms.
TKmessage () (Continued)

Examples:
This example will use the TKmessage routine to display a user-specified string.


PROGRAM TKMESSAGEEXAMPLE


INCLUDE 'TKHEADERS.h'


RECORD/TKINFO/granuleHandle1B11



CHARACTER*(*) algorithmVers



INTEGER status

CHARACTER*(*) jobname
call getargs ( 1, jobname )

C
Open the file for reading.



call TKopen ( '1B111.980201.100.1.HDF', '1B11', 'HDF4', TKREAD, 

>
      

jobname, granuleHandle, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKclose ( granuleHandle, status )


STOP


END

Return Values:
None.

Prerequisites:

None.

TKopen ()

Function Name:
TKopen ()

Description:
This routine opens a TRMM standard data product file prior to reading or writing science data or metadata.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKopen ( granuleID, dataType, filemode, filetype, jobname, granuleHandle, status )

 
CHARACTER*(*) granuleID
 
CHARACTER*(*) dataType
 
CHARACTER*1 filemode


CHARACTER *(*) filetype


CHARACTER *(*) jobname
 
RECORD/TKINFO/granuleHandle


INTEGER status
Input:
granuleID


A character string containing the name of the file to be opened.


dataType

A character string identifying the TRMM designator of the algorithm.


filemode

Access mode for the file being opened.  The valid values for filemode are the following:  TKREAD and TKWRITE.


TKREAD opens the file in read-only mode, without changing the metadata or initializing the file elements.


TKWRITE opens the file in write-only mode and initializes the metadata with default values and the data structures in the file.


filetype


A character string identifying the format name of the file.  Currently, HDF4 and binary.

TKopen () (Continued)


jobname

A character string identifying the jobname to be assigned to a particular run.  In the algorithm developer's and researcher's environment, this is not used.  The user may send any string.  A warning message may appear, but this can be ignored.  This must be sent in as an argument on the command line.  However, if the user is running the algorithm on the PPS system, the jobname will be sent in as the first argument to the algorithm command line.  This jobname must then be assigned to the TKopen calling argument.  jobname is used in PPS to trace errors and to send in metadata information.
Output:
granuleHandle

A structure containing information about the data product.  granuleHandle is similar to a file pointer.


status


An integer that will either be equivalent to TK_SUCCESS or TK_FAIL.

Details:
All files opened by TKopen must be closed by TKclose.  TKopen must be called prior to reading or writing to a file with any of the I/O Toolkit routines.


When a file is opened using the filemode of TKREAD, the file pointer is positioned at the beginning of the orbit, not the beginning of the granule.  For most products, the beginning of the orbit is the same as the beginning of the file, except for TMI Level 1 products.  TMI Level 1 products contain 50 scans of overlap, and when the file is initially opened in read mode, the file pointer is positioned after the pre-orbit overlap (i.e., at the first scan of the orbit data).  The file pointer can be repositioned using TKseek.


When a file is opened with the filemode of TKWRITE, the file pointer is always positioned at the beginning of the file.  Opening a file with filemode = TKWRITE will initialize the metadata for that file with default values and allow write-only access to the file.  These values can be changed using one of the metadata access routines.  If the file already exists, it will be deleted and a new file will be opened with the same name (i.e., the contents will be lost).


In the example for TKopen, the filename is being passed directly to the TKopen routine.  This is just for demonstration purposes.  In PPS, the actual filenames will be passed via a command line parameter.

Examples:
This example will use the TKopen routine to open a 1B11 data product.  The file is then closed.  It is assumed that jobname is sent as an argument on the command line.

TKopen () (Continued)


PROGRAM TKOPENEXAMPLE

INCLUDE 'TKHEADERS.h'



INCLUDE 'TK_1B11.h'




RECORD/TKINFO/granuleHandle





RECORD/LIB11_SWATH/scan1b11





COMMON/LIB11_SWATH/scan1b11





INTEGER status





CHARACTER*255 jobname



            call getargs ( 1, jobname )

C
Open the file for reading.



call TKopen ( '1B11.980204.100.1.HDF', '1B11', 'HDF4', TKREAD,

>
      

jobname, granuleHandle, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF


call TKclose ( granuleHandle, status )



STOP



END

Return Values:
None.

Prerequisites:
Before calling TKopen, the file must exist before it can be opened in read-only mode.

TKreadGrid ()

Function Name:
TKreadGrid ()

Description:
This routine reads gridded data from Level 3 satellites.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKreadGrid ( granuleHandle, status )


RECORD/TKINFO/granuleHandle

RECORD/GridTYPE/grid


COMMON/GridTYPE/grid

INTEGER status

Input:
granuleHandle

A structure containing information about the data product.  granuleHandle is initialized in TKopen.  granuleHandle is similar to a file pointer.

Output:
grid


A structure containing the complete grid data read from the input data product.  This structure must be declared to correspond to the data product being read.  However, while it is an input to the routine, it is a silent input and does not need to be sent on the call.  Results are put in the grid through the common block.


status


A return value of the read success.  It will be equivalent either to TK_SUCCESS or TK_FAIL.

Details:
A grid of the input product is read and stored in the appropriate grid record.  If the read failed, the status will indicate failure.


The definition of the TKreadGrid is contained in TKHEADERS.h, but the structures to be written are contained in instrument-specific header files (e.g., TK_1B11.h, TK2A21.h, etc.).  These files must be included when using this routine so that the instrument/algorithm-specific structures are included.

Examples:
This example will use the TKreadGrid routine to read the data from a 3A26 data product and print the first value of rain count.

TKreadGrid () (Continued)


PROGRAM TKREADGRIDEXAMPLE


INCLUDE 'TKHEADERS.h'

INCLUDE 'TK_3A26.h'


RECORD/TKINFO/granuleHandle3A26



RECORD/L3A26_GRID/dataGrid 



COMMON/L3A26_GRID/dataGrid



INTEGER status

CHARACTER*255 jobname



            call getargs ( 1, jobname )

C
Open the file for reading.



Call TKopen ( '3A26.980201.1.HDF', '3A26', 'HDF4', TKREAD,

>
      

jobname, granuleHandle3A26, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKreadGrid ( granuleHandle3A26, status )



IF ( status .NE. TK_SUCCESS ) THEN




Call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKclose ( granuleHandle3A26, status )



STOP



END

Return Values:
None.

Prerequisites:
Before calling TKreadGrid, a file must be opened for reading by calling TKopen with the filemode set to TKREAD.  When the file is no longer needed, it should be closed by calling TKclose.

TKreadMetaFile ()

Function Name:
TKreadMetaFile ()

Description:
This routine reads the accumulated Level 3 metadata from the named file and loads it to the structure, which is then written on closing.  It is called by a Level 3 program on the END condition and only after TKwriteMetaFile and before TKclose.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKreadMetaFile ( metafileName, granuleHandle, status )


CHARACTER *(*) metafileName

RECORD/TKINFO/granuleHandle

INTEGER status
Input:
metafileName
The name of the intermediate file that has been used to accumulate metadata information during the BEGIN and MIDDLE run executions of a Level 3 program.  This filename is sent to the program on the command line to the program.


granuleHandle

A structure containing information about the data product.  granuleHandle is initialized in TKopen.  granuleHandle is similar to a file pointer.

Output:
status

Returns the action status of the routine: TK_SUCCESS or TK_FAIL.

Details:
Most Level 3 algorithms for TRMM operate on one orbit of data at a time.  In order to accumulate metadata information from one execution to another, an intermediate metadata file must be written.  This routine ensures that the final metadata recorded in the temporary file is read and placed in the structure so that it can be written during TKclose.

Examples:
The example provided reads the metadata file for 3A12 and transfer the accumulated metadata to the file structure.

TKreadMetaFile () (Continued)


/* USED in END only – EXAMPLE */


PROGRAM TKREADMETAFILEEXAMPLE


INCLUDE 'TKHEADERS.h'

INCLUDE 'TK_3A12.h'


RECORD/TKINFO/granule3A12



RECORD/TKINFO/g2A12



RECORD/L3A12_GRID/dataGrid



COMMON/L3A12_GRID/dataGrid



INTEGER status

CHARACTER*255 jobname




CHARACTER*255 tempname





CHARACTER*255 mode




            call getargs ( 1, jobname )





call getargs ( 5, tempname )




call getargs ( 6, mode )

C
Open the file for reading.



Call TKopen ( '3A12.980201.1.HDF', '2A12', 'HDF4', TKWRITE,

>
      

jobname, granule3A12, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



Call TKopen ( '2A12.980201.100, 1.HDF', '2A12', 'HDF4', TKREAD,

>
      

jobname, g2A12, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF

C
Here the 3A12 processing goes on.



call TKwriteMetaFile ( tempname, g2A12, granule3A12, status )



if ( mode .EQ. 'END' )




call TKreadMetaFile ( tempname, granule3A12, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKclose ( granule3A12, status )



call TKclose ( g2A12, status )



STOP



END

/* Assumes call: L3A12main job 2a12File 3a12File viFile metafile END */
TKreadMetaFile () (Continued)

Return Values:
None.

Prerequisites:
Before calling TKreadMetaFile, a file must be opened for writing by calling TKopen.  Also on the END run before calling TKreadMetaFile, the user should have made a call to TKwriteMetaFile.  When the file is no longer needed, it should be closed by calling TKclose as the routine actually does the physical writing.

TKreadScan ()

Function Name:
TKreadScan ()

Description:
This routine reads scan-based satellite product data and stores them in the scan-based data structure.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKreadScan ( granuleHandle, status )


RECORD/WRAPPER_HANDLE/granuleHandle

RECORD/scanline_data/swathData


COMMON/scanline_data/swathData


C 'scanline_data' should be replaced with a specific structure name.

Input:
granuleHandle

A structure containing information about the data product.  granuleHandle is initialized in TKopen.  granuleHandle is similar to a file pointer.

Output:
swathData

A structure containing the complete scan line data, which is obtained from the input data product.  This structure must correspond to the data file being read.  Refer to the file specification documentation.  However, the user does not need to include this on the call.  The common block is used for the return, so it is not necessary to be included on the call.


status


Return value for the read.  It will either be TK_SUCCESS or TK_FAIL.

Details:
TKopen positions the file pointer at the beginning of the orbit, not the granule.  Thus, the first call to TKreadScan returns the first scan in the orbit.  Except for in the TMI Level 1data products, the beginning of the orbit and the beginning of the granule are the same.  The scan number is updated on each call, so consecutive calls return consecutive scans.


TKseek may be used to move forward or backward by a certain number of scans.  Refer to the description of TKseek in this document.


The definition of the TKreadScan is contained in TKHEADERS.h, but the structures to be written are contained in instrument-specific header files (e.g., TK_1B11.h, TK2A21.h, etc.).  These files must be included when using this routine so that the instrument/algorithm-specific structures are included.
TKreadScan () (Continued)

Examples:
This example will use the TKreadScan routine to read the first scan line of data from a 1B11 product and print the first scan time of the orbit.


PROGRAM TKREADSCANEXAMPLE


INCLUDE 'TKHEADERS.h'

INCLUDE 'TK_L1B11.h'


RECORD/TKINFO/granuleHandle



RECORD/L1B11_SWATH/L1B11Data



COMMON/LIB11_SWATH/L1B11Data



INTEGER status



CHARACTER*255 jobname
call getargs ( 1, jobname )

C
Open the file for reading.



call TKopen ( '1B11.980201.100.1.HDF', '1B11', 'HDF4', TKREAD,

>
      

jobname, granuleHandle, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKreadScan ( granuleHandle, status )



IF ( status .NE. TK_SUCCESS ) THEN




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



WRITE (*,*) 'Scan Time: ', L1B11Data.scanTime.month, '/',

>
        

L1B11Data.scanTime.dayOfMonth, '/',

>
        

L1B11Data.scanTime.year,

>
        

L1B11Data.scanTime.hour, ': ',

>
        

L1B11Data.scanTime.minute, ': ',

>
        

L1B11Data.scanTime.second



call TKclose ( granuleHandle, status )



STOP



END

Return Values:
None.

Prerequisites:
Before calling TKreadScan, a data product must be opened for reading by calling TKopen.  When the data product is no longer needed, it should be closed by calling TKclose.

TKreadStruct ()

Function Name:
TKreadStruct ()

Description:
TKreadStruct reads satellite product data and stores them in the data structures.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKreadStruct ( granuleHandle, structName, status )


RECORD/TKINFO/granuleHandle

RECORD/APPROPRIATESTRUCT/sHeader


COMMON/APPROPRIATESTRUCT/sHeader

Input:
granuleHandle

A structure containing information about the data product.  granuleHandle is initialized in TKopen.  granuleHandle is similar to a file pointer.

structName

The name of the structure that you want to read.

Output:
sHeader

The appropriate structure variable of the type that is desired to be read.  However, this does not need to be sent in on the call.  The Toolkit will return its values through the common block.  This must be set up by the user and is therefore a key aspect of the success of this routine.


status


Contains the return status either equivalent to TK_SUCCESS or TK_FAIL.

Details:
The user must provide the appropriate TKINFO handle that has been opened for reading, the name of the structure that should be read from the file, and a variable typed with the appropriate structure type.


The definition of the TKreadStruct is contained in TKHEADERS.h, but the structures to be written are contained in instrument-specific header files (e.g., TK_1B11.h, TK2A21.h, etc.).  These files must be included when using this routine so that the instrument/algorithm-specific structures are included.
TKreadStruct () (Continued)

Examples:
This example will use the TKreadStruct routine to read the ray header from a 1B21 product and print the ray start value.

PROGRAM TKREADSTRUCTEXAMPLE

INCLUDE 'TKHEADERS.h'
INCLUDE 'TK_L1B21.h'
RECORD/TKINFO/granuleHandle

RECORD/L1B21_SWATH/swathData

COMMON/LIB21_SWATH/swathData

RECORD/LIB21_RAY_HEADER/PRHeader

COMMON/LIB21_RAY_HEADER/PRHeader

INTEGER status

CHARACTER*(*) jobname
call getargs ( 1, jobname )

C
Open the file for reading.



call TKopen ( '1B21.980201.100.1.HDF', '1B21', 'HDF4', TKREAD,

>
      

jobname, granuleHandle, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF

call TKreadStruct ( granuleHandle,

>




'LIB21_RAY_HEADER', status )



IF ( status .NE. TK_SUCCESS ) THEN

call TKmessage ( granuleHandle.jobname, TKERROR,
>




'message to print' )


ENDIF

WRITE (*,*) 'Ray Start: ', PRHeader(1).rayStart

call TKclose ( granuleHandle, status )

STOP

END

Return Values:
None.

Prerequisites:
Before calling TKreadStruct, a file must be opened for reading by calling TKopen.  When the file is no longer needed, it should be closed by calling TKclose.

TKseek ()

Function Name:
TKseek ()

Description:
This routine moves the file pointer to a specified position within the file; this enables the reading of a specified scan line.  TKseek can move either relative to the current scan line or to the beginning of the orbit/file.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKseek ( granuleHandle, offset, type, status )


RECORD/TKINFO/granuleHandle

INTEGER offset

INTEGER type


INTEGER status
Input:
granuleHandle

A structure containing information about the data product.  granuleHandle is initialized in TKopen.  granuleHandle is similar to a file pointer.


offset

The number of scans to move either relative to the current position or to the beginning of the orbit.  The offset can either be positive, for moving forward, or negative, for moving backward.


type


The type parameter will be one of two values; the values can be either TK_REL_SCAN_OFF or TK_ABS_SCAN_OFF.  If the value TK_REL_SCAN_OFF is used as the type parameter, then the seek is relative to the current scan at the file pointer.  If TK_ABS_SCAN_OFF is used, then the seek is from the beginning of the orbit.


If type = TK_REL_SCAN_OFF, offset is an integer specifying the number of scan lines to move, relative to the current scan.  If offset = 5, this would move the file pointer forward by five scans.  If offset = -1, the file pointer would move back by one scan.

TKseek () (Continued)


If type = TK_ABS_SCAN_OFF, offset is an integer specifying the scan line relative to the beginning of the file.  For example, to move to the beginning of a TMI L1B data file (with 50 scans of overlap), the type would be TK_ABS_SCAN_OFF and the offset would be -50.

Output:
status

Contains the status of the attempt to seek.  It returns TK_SUCCESS or TK_FAIL.

Details:
Remember, when the TRMM data files are opened in read mode, the file pointer is positioned at the beginning of the orbit (i.e., scan 0).  If an overlapped product is being worked with (i.e., the TMI Level 1 product), the file pointer needs to be moved back to the beginning of the data file (i.e., move backwards 50 scans) if the first scan of the overlap is desired.  If the first scan of the orbit is desired, then the file is correctly positioned when it is opened.

When the TRMM data files are opened in write mode, they are always opened at the beginning of the file.  For TMI products, this means the beginning of the overlap.

TKseek initializes instructions for the file pointer; however, the actual seek is sometimes not done until the read or write code is called.

Examples:
This example will use the TKseek routine to move to the beginning of a TMI L1B data file (i.e., the first scan of the data file or the first scan of the overlap) and then advance five scans in the overlap data.


PROGRAM TKSEEKEXAMPLE


INCLUDE 'TKHEADERS.h'

INCLUDE 'TK_L1B11.h'
C
Declare variables.



RECORD/TKINFO/gHandle1B11



INTEGER status



CHARACTER*255 jobname
TKseek () (Continued)

call getargs ( 1, jobname )

C
Open the file for reading.



call TKopen ( '1B11.980201.100.1.HDF', '1B11', 'HDF4', TKREAD,

>
      

jobname, gHandle1B11, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF

C
Move the file pointer to the beginning of a TMI file (i.e., before the 

C
pre-orbit overlap).



call TKseek ( gHandle1B11, -50, TK_ABS_SCAN_OFF, status )



IF ( status .NE. TK_SUCCESS ) THEN


  

call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF

C
Move the file pointer ahead 5 scans, relative to the current position.

C
(Scan count will be 5).



call TKseek ( gHandle1B11, 5, TK_REL_SCAN_OFF, status )



IF ( status .NE. TK_SUCCESS ) THEN


  

call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF

C
Move the file pointer back to the beginning of the orbit. */



call TKseek ( gHandle1B11, 0, TK_ABS_SCAN_OFF, status )



IF ( status .NE. TK_SUCCESS ) THEN


  

call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKclose ( gHandle1B11, status )



STOP



END

Return Values:
None.

Prerequisites:
Before calling TKseek, the file must have been opened by calling TKopen.

TKsetMetaFloat ()

Function Name:
TKsetMetaFloat ()

Description:
This routine writes floating point metadata items to a TRMM standard data product.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKsetMetaFloat ( granuleHandle, metaName, elementName, value, status )


RECORD/TKINFO/granuleHandle


CHARACTER *(*) group

CHARACTER*(*) element

REAL value

INTEGER status
Input:
granuleHandle

A structure containing information about the data product.  granuleHandle is initialized in TKopen.  granuleHandle is similar to a file pointer.

metaName

Metadata elements are placed into larger groupings based upon their role within the metadata.  Refer to the file specification document for the appropriate metadata grouping name.


elementName

The name of the element that is to be written to the file.  Refer to the file specification for the metadata element names.


value


A floating point value corresponding to the metadata element specified by metaName and elementName.

Output:
status

Returns status of routine activation: TK_SUCCESS or TK_FAIL.
TKsetMetaFloat () (Continued)

Details:
All metadata are stored internally in character format.  The floating point metadata set routines translate the floating point to character before writing.

Examples:
This example will use the TKsetMetaFloat routine to write the solar beta angle at the start of the granule to a 1B11 product.


PROGRAM TKSETMETAFLOATEXAMPLE


INCLUDE 'TKHEADERS.h'


RECORD/TKINFO/granuleHandle1B11



REAL beta



INTEGER status

CHARACTER*(*) jobname
call getargs ( 1, jobname )

C
Open the file for reading.


call TKopen ( '1B111.980201.100.1.HDF',

>




'1B11', 'HDF4', TKWRITE, jobname,
>


granuleHandle1B11, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF

C
Here the beta angle would have to be set.



call TKsetMetaFloat ( granuleHandle1B11, 


      

'NavigationRecord',

>

'SolarBetaAngleAtBeginningOfGranule',

>

beta, status)



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKclose ( granuleHandle1B11, status )



STOP



END

Return Values:
None.

Prerequisites:
Before calling TKsetMetaFloat, a data product must be opened for writing by calling TKopen.  When the data product is no longer needed, it should be closed by calling TKclose.

TKsetMetaInt ()

Function Name:
TKsetMetaInt ()

Description:
This routine writes integer metadata items to a TRMM standard data product.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKsetMetaInt ( granuleHandle, metaName, elementName, value, status )


RECORD/TKINFO/granuleHandle


CHARACTER *(*) group

CHARACTER*(*) element

INTEGER value

INTEGER status
Input:
granuleHandle

A structure containing information about the data product.  granuleHandle is initialized in TKopen.  granuleHandle is similar to a file pointer.

metaName

Metadata elements are placed into larger groupings based upon their role within the metadata.  Refer to the file specification document for the appropriate metadata grouping name.


elementName

The name of the element that is to be written to the file.  Refer to the file specification for the metadata element names.


value

An integer value corresponding to the metadata element specified by metaName and elementName.

Output:
status

Returns status of routine activation: TK_SUCCESS or TK_FAIL.

TKsetMetaInt () (Continued)

Details:
All metadata are stored internally in character format.  The integer metadata access routines translate the integer into character data before writing.

Examples:
This example will use the TKsetMetaInt routine to write the orbit number to a 1B11 product.


PROGRAM TKSETMETAINTEXAMPLE


INCLUDE 'TKHEADERS.h'


RECORD/TKINFO/granuleHandle1B11



INTEGER orbNum



INTEGER status

CHARACTER*(*) jobname
call getargs ( 1, jobname )

C
Open the file for reading.



call TKopen ( '1B111.980201.100.1.HDF', '1B11', 'HDF4', TKREAD,

>
      

jobname, granuleHandle1B11, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKsetMetaInt ( granuleHandle1B11, 


      

'FileHeader',

>

'GranuleNumber',

>

orbNum, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKclose ( granuleHandle1B11, status )



STOP



END

Return Values:
None.

Prerequisites:
Before calling TKsetMetaInt, a data product must be opened for writing by calling TKopen.  When the data product is no longer needed, it should be closed by calling TKclose.

TKsetMetaString ()

Function Name:
TKsetMetaString ()

Description:
This routine writes character metadata items to a TRMM standard data product.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKsetMetaString ( granuleHandle, metaName, elementName, value, status )


RECORD/TKINFO/granuleHandle

CHARACTER *(*) group

CHARACTER*(*) element

CHARACTER*(*) value

INTEGER status
Input:
granuleHandle

A structure containing information about the data product.  granuleHandle is initialized in TKopen.  granuleHandle is similar to a file pointer.

metaName

Metadata elements are placed into larger groupings based upon their role within the metadata.  Refer to the file specification document for the appropriate metadata grouping name.


elementName

The name of the element that is to be written to the file.  Refer to the file specification for the metadata element names.


value


A string containing the value desired to be written to the metadata field specified by metaName and elementName.

Output:
status

Returns status of routine activation: TK_SUCCESS or TK_FAIL.

TKsetMetaString () (Continued)

Details:
All metadata are stored internally in character format.

Examples:
This example will use the TKsetMetaString routine to write the algorithm version to a 1B11 product.


PROGRAM TKSETMETASTRINGEXAMPLE


INCLUDE 'TKHEADERS.h'


RECORD/TKINFO/granuleHandle1B11



CHARACTER*(*) algVers



INTEGER status

CHARACTER*(*) jobname
call getargs ( 1, jobname )

C
Open the file for reading.



call TKopen ( '1B111.980201.100.1.HDF', '1B11', 'HDF4', TKREAD,

>
      

jobname, granuleHandle1B11, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



algorithmVers='1B21_1.2.3'


call TKsetMetadataChar ( granuleHandle1B11, 


      

'FileHeader', 'AlgorithmVersion', algVers,status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKclose ( granuleHandle1B11, status )



STOP



END

Return Values: 
None.

Prerequisites:
Before calling TKsetMetaString, a data product must be opened for writing by calling TKopen.  When the data product is no longer needed, it should be closed by calling TKclose.

TKtransferMetaData ()

Function Name:
TKtransferMetaData ()

Description:
This routine is used to transfer metadata from the input files used by a program to the output files produced by the program.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKtransferMetaData ( inHandle, outHandle )


RECORD/TKINFO/


RECORD/TKINFO

Input:
inHandle

A structure containing information about the input data product.  inHandle is returned by TKopen.  inHandle is similar to a file pointer.


outHandle

A structure containing information about the output data product.  outHandle is returned by TKopen.  outHandle is similar to a file pointer.

Output:
None.

Details:
Certain elements of metadata from the input file should also be put into the output file.  Based on the handle, this routine fills the necessary structure fields in the output structure by transferring metadata from the input structure.  Programmers should do this for each input product they are using.  Generally, this call is made just before TKclose is issued.

Examples:
This example will transfer the metadata from 1C21, 2A21, and 2A23 to the 2A25 product.

TKtransferMetaData () (Continued)


PROGRAM TKTRANSFERMETADATAEXAMPLE


INCLUDE 'TKHEADERS.h'

INCLUDE 'TK_1C21.h'

INCLUDE 'TK_2A21.h'

INCLUDE 'TK_2A23.h'

INCLUDE 'TK_2A25.h'


RECORD/TKINFO/granule1C21



RECORD/TKINFO/granule2A21



RECORD/TKINFO/granule2A23



RECORD/TKINFO/granule2A25


CHARACTER*255 jobname
call getargs ( 1, jobname )

C
Open the file for reading.



call TKopen ( '1C21.980201.100.1.HDF', '1C21', 'HDF4', TKREAD,

>
      

jobname, granule1C21, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKopen ( '2A21.980201.100.1.HDF', '2A21', 'HDF4', TKREAD,

>
      

jobname, granule2A21, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKopen ( '2A23.980201.100.1.HDF', '2A23', 'HDF4', TKREAD,

>
      

jobname, granule2A23, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKopen ( '2A25.980201.100.1.HDF', '2A25', 'HDF4', TKWRITE,

>
      

jobname, granule2A25, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF

C
Here would be the 2A25 processing.

TKtransferMetaData () (Continued)



call TKtransferMetaData ( granule1C21, granule2A25 )



call TKtransferMetaData ( granule2A1, granule2A25 )



call TKtransferMetaData ( granule2A23, granule2A25 )

C
Obviously other files should be closed also.


call TKclose ( granule2A25, status )


STOP


END

Return Values:
None.

Prerequisites:
Before calling TKtransferMetaData, an input data product has to be opened for reading by calling TKopen for the input file.  In addition, a data product has to be opened for writing by calling TKopen for the output file.  When the data product is no longer needed, it should be closed by calling TKclose.

TKwriteGrid ()

Function Name:
TKwriteGrid ()

Description:
This routine writes gridded data from Level 3 satellites.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKwriteGrid ( granuleHandle, status )


RECORD/TKINFO/granuleHandle

RECORD/GridTYPE/grid

COMMON/GridTYPE/grid

INTEGER status
Input:
granuleHandle

A structure containing information about the data product.  granuleHandle is initialized in TKopen.  granuleHandle is similar to a file pointer.


grid

A structure containing the complete grid data that will be written to a data product.  This structure must be declared to correspond to the data product being written.  However, grid does not need to be sent in FORTRAN, as the values are returned by the Toolkit in the common block.
Output:
status

A return value of the write success.  It will be equivalent either to TK_SUCCESS or TK_FAIL.

Details:
An appropriate product grid in memory is written to the output file.  The physical write does not really happen until TKclose is called.


The definition of the TKwriteGrid is contained in TKHEADERS.h, but the structures to be written are contained in instrument-specific header files (e.g., TK_1B11.h, TK2A21.h, etc.).  These files must be included when using this routine so that the instrument/algorithm-specific structures are included.
Examples:
This example will use the TKwriteGrid routine to write data to a 3A26 product.

TKwriteGrid () (Continued)


PROGRAM TKWRITEGRIDEXAMPLE


INCLUDE 'TKHEADERS.h'

INCLUDE 'TK_3A26.h'


RECORD/TKINFO/granuleHandle



RECORD/L3A26_GRID/dataGrid



COMMON/L3A26_GRID/dataGrid



INTEGER status

CHARACTER*255 jobname



            call getargs ( 1, jobname )

C
Open the file for writing.



call TKopen ( '3A26.980201.1.HDF', '3A26', 'HDF4', TKWRITE,

>
      

jobname, granuleHandle, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF

C
Here the grid is filled in the common block area.



call TKwriteGrid ( granuleHandle, status )



IF ( status .NE. TK_SUCCESS ) THEN




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKclose ( granuleHandle, status )



STOP



END

Return Values:
None.

Prerequisites:
Before calling TKwriteGrid, a file must be opened for reading by calling TKopen with the filemode set to TKWRITE.  When the file is no longer needed, it should be closed by calling TKclose.

TKwriteMetaFile ()

Function Name:
TKwriteMetaFile ()

Description:
This routine reads the accumulated Level 3 metadata from the named file and loads it to the structure, which is then written on closing.  It is called by a Level 3 program on all modes (BEGIN, MIDDLE, and END conditions).

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKwriteMetaFile ( metafileName, inHandle, outHandle, status )


CHARACTER *(*) metafile

RECORD/TKINFO/inHandle

RECORD/TKINFO/outHandle

INTEGER status
Input:
metafileName
The name of the intermediate file that has been used to accumulate metadata information during the BEGIN, MIDDLE, and END run executions of a Level 3 program.  This filename is sent to the program on the command line to the program.


inHandle

A structure containing information about the data product.  inHandle is returned by TKopen.


outHandle


A structure containing information about the data product.  outHandle is returned by TKopen.

Output:
status

Returns the status of routine activation: TK_SUCCESS or TK_FAIL.

Details:
Most Level 3 algorithms for TRMM operate on one orbit of data at a time.  In order to accumulate metadata information from one execution to another, an intermediate metadata file must be written.  This routine ensures that the final metadata recorded in the temporary file is read and placed in the structure so that it can be written during TKclose.

TKwriteMetaFile () (Continued)

Examples:
The example provided writes the metadata file for 3A12 and transfers the accumulated metadata to the file structure.


/*USED in BEGIN, MIDDLE and END – EXAMPLE */

PROGRAM TKWRITEMETAFILEEXAMPLE


INCLUDE 'TKHEADERS.h'

INCLUDE 'TK_3A12.h'


RECORD/TKINFO/granule3A12



RECORD/TKINFO/g2A12



RECORD/L3A12_GRID/dataGrid



COMMON/L3A12_GRID/dataGrid



INTEGER status

CHARACTER*255 jobname




CHARACTER*255 tempname





CHARACTER*255 mode




            call getargs ( 1, jobname )





call getargs ( 5, tempname )




call getargs ( 6, mode )



call TKopen ( '3A12.980201.1.HDF', '3A12', 'HDF4', TKWRITE,

>


jobname, granule3A12, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKopen ( '2A12.980201.100,1.HDF', '2A12', 'HDF4', TKREAD,
>
     

jobname, g2A12, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF

C
Here the 3A12 processing goes on.



call TKwriteMetaFile ( tempname, g2A12, granule3A12, status )



call TKclose ( granule3A12, status )



call TKclose ( g2A12, status )



STOP



END

/* Assumes call: L3A12main job 2a12File 3a12File viFile metafile END */

TKwriteMetaFile () (Continued)

Return Values:
None.

Prerequisites:
Before calling TKwriteMetaFile, a file must be opened for writing by calling TKopen.  When the file is no longer needed, it should be closed by calling TKclose as the routine actually does the physical writing.

TKwriteScan ()

Function Name:
TKwriteScan ()

Description:
This routine writes scan-based satellite product data and stores them in the scan-based data structure.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKwriteScan ( granuleHandle, status )


RECORD/WRAPPER_HANDLE/granuleHandle

RECORD/scanline_data/swathData

COMMON/scanline_data/swathData

INTEGER status


C 'scanline_data' should be replaced with a specific structure name.

Input:
granuleHandle

A structure containing information about the data product.  granuleHandle is initialized in TKopen.  granuleHandle is similar to a file pointer.


swathData


A structure containing the complete scan line data, which is obtained from the input data product.  However, in FORTRAN this does not need to be sent in to the routine.  The Toolkit uses the appropriate common block.

Output:
status

Returns the status of the routine activation: TK_SUCCESS or TK_FAIL.

Details:
The definition of the TKwriteScan is contained in TKHEADERS.h, but the structures to be written are contained in instrument-specific header files (e.g., TK_1B11.h, TK2A21.h, etc.).  These files must be included when using this routine so that the instrument/algorithm-specific structures are included.


Each call to TKwriteScan increments the scan line number by one each time a scan line of data is written to the output product (i.e., appended).

TKwriteScan () (Continued)

Examples:
This example will use the TKwriteScan routine to write the first scan line of data to a 1B11 product.


PROGRAM TKWRITESCANEXAMPLE


INCLUDE 'TKHEADERS.h'

INCLUDE 'TK_L1B11.h'


RECORD/TKINFO/granuleHandle



RECORD/L1B11_SWATH/L1B11Data



COMMON/LIB11_SWATH/L1B11Data



INTEGER status



CHARACTER*255 jobname
call getargs ( 1, jobname )

C
Open the file for writing.



call TKopen ( '1B11.980201.100.1.HDF', '1B11', 'HDF4', TKWRITE,

>
      

jobname, granuleHandle, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF

C
Here the scan information would need to be filled in.



call TKwriteScan ( granuleHandle, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF



call TKclose ( granuleHandle, status )



STOP



END

Return Values:
None.

Prerequisites:
Before calling TKwriteScan, a data product must be opened for writing by calling TKopen.  When the data product is no longer needed, it should be closed by calling TKclose.

TKwriteStruct ()

Function Name:
TKwriteStruct ()

Description:
This routine writes scan-based satellite product data from an appropriate data structure to the output file.

Usage:
INCLUDE 'TKHEADERS.h'

SUBROUTINE TKwriteStruct ( granuleHandle, structName, status )


RECORD/TKINFO/granuleHandle

RECORD/TARGETSTRUCTURE/sHeader


COMMON/TARGETSTRUCTURE/sHeader

CHARACTER*(*) sName

INTEGER status
Input:
granuleHandle

A structure containing information about the data product.  granuleHandle is initialized in TKopen.  granuleHandle is similar to a file pointer.

structName
The name of the structure that you want to write.


sHeader


The appropriate structure variable of the type that is desired to be written.  However, this does not need to be sent in on the call.  The Toolkit will set its values through the common block.  This must be set up by the user and is therefore a key aspect of the success of this routine.
Output:
status


Contains the return status either equivalent to TK_SUCCESS or TK_FAIL.

Details:
The routine assumes that the user has filled the appropriate structure variable and desires to have it recorded in the output file.  The user is responsible for filling the structure.


The definition of the TKwriteStruct is contained in TKHEADERS.h, but the structures to be written are contained in instrument-specific header files (e.g., TK_1B11.h, TK2A21.h, etc.).  These files must be included when using this routine so that the instrument/algorithm-specific structures are included.

Examples:
This example will write a ray header/calibration coefficient header to a L1B21 file.

TKwriteStruct () (Continued)

PROGRAM TKWRITESTRUCTEXAMPLE

INCLUDE 'TKHEADERS.h'
INCLUDE 'TK_1B21.h'
RECORD/TKINFO/granuleHandle1B21

RECORD/L1B21_SWATH/L1B21Data

RECORD/L1B21_RAY_HEADER/L1B21Header

INTEGER status

CHARACTER*255 jobname



            call getargs ( 1, jobname )

C
Open the file for writing.



call TKopen ( '1B21.980201.1.HDF', '1B21', 'HDF4', TKWRITE,

>
      

jobname, granuleHandle1B21, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF

C
This write scan call is just for demonstration.  It does not need to 

C


precede the write header call.

call TKwriteScan ( granuleHandle1B21, status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF

C
At this point the user has filled the ray header structure.

call TKwriteStruct ( granuleHandle1B21,

>



'L1B21_RAY_HEADER', status )



IF ( status .NE. TK_SUCCESS ) THEN.




call TKmessage ( granuleHandle.jobname, TKERROR,
>


'message to print' )



ENDIF

call TKclose ( granuleHandle1B21, status )

STOP

END

Return Values:
None.

Prerequisites:
Before calling TKwriteStruct, a file must be opened for writing by calling TKopen.  When the file is no longer needed, it should be closed by calling TKclose.

3.2 TRMM Specific Helper Routines and Files

These helper functions are unique to the transition from the TSDIS Toolkit to the PPS Toolkit.  They do not form part of the generic PPS TKIO.

3.2.1 FORTRAN Helper Functions
SUBROUTINE TKcpyscan1B11to2A12(inscan, outscan)

This function copies scan status and navigation structures from TMI 1B11 to TM 2A12 data structure.

inscan is a SWATH_1B11 structure from which the values listed above are to be retrieved.

outscan is a SWATH_2A12 structure into which the values are to be transferred.

3.2.2 Error Mnemonic Files

In the old TSDIS Toolkit, programmers could not send their own dynamically created message string to either the error or warning reporting routines.  As a result, a set of integer error mnemonics was created, and these mnemonics were keys to error files maintained by the system.

The PPS Toolkit has eliminated the error files.  It allows the user to send any string to the TKmessage service.  However, some algorithm developers and researchers wished to continue to use the static strings in the error files and the mnemonics that were the keys.  So, these error mnemonic files contain definitions of the mnemonics and associations with the strings.  This means that the user can send in the mnemonic as the error message to TKmessage.

One of the following files would need to be included in code in which a programmer wishes to continue the use of TSDIS error mnemonics:

TK_2A21messages.h

TK_2A23messages.h

TK_2A25messages.h

TK_2B31messages.h

TK_2A12messages.h

TK_3A25messages.h

TK_3A26messages.h

TK_3A11messages.h

TK_3A12messages.h

4.0 Parameter Dictionary

The Parameter Dictionary provides general information about the names of swath and grid structures used by programmers.  It also provides introductory information about metadata for TRMM products.

4.1
Structure Types
TKHEADERS.h

TKINFO

PR

L1B21_SWATH

L2A21_SWATH

L2A23_SWATH

L2A25_SWATH

L3A25_GRID

L3A26_GRID

TMI

L1B11_SWATH

L2A_12_SWATH

L3A11_GRID

Combined

L2B31_SWATH

L3B31_GRID

VIRS

L1B01_SWATH

TRMM and Others Combined

L3B42_GRID

L3B43_GRID

4.2
Modes for TKopen

	TKopen Parameter
	Definition

	TKREAD
	Opens the file for read-only access.

	TKWRITE
	Opens the file for write-only access and initializes the metadata with default values.


4.3
General Return Status

	Return Status Parameter
	Definition

	TK_SUCCESS
	Routine completed successfully.

	TK_FAIL
	Routine encountered an error.


4.4
Type of Offsets for TKseek

	TKseek Offset Parameter
	Definition

	TK_REL_SCAN_OFF 
	Indicates that the parameter 'offset' in TKseek represents the relative number of scans from the current position.

	TK_ABS_SCAN_OFF 
	Indicates that the parameter 'offset' represents the absolute number of scans from the beginning of the file.


4.5
Metadata Information
This section lists the metadata that each algorithm should write.  A description of each metadata group and metadata element is cited in PPS Metadata for TRMM Products.  The methods for writing metadata are covered in Section 2.1 and Section 3.1 of this document.

Most algorithms write little metadata directly.  Most Level 1C and Level 2 algorithms write only AlgorithmVersion directly and call TKtransferMetaData to copy other metadata.  Level 3 algorithms write a few more metadata directly and copy some metadata (but not orbital metadata).  Level 1B algorithms write the greatest amount of metadata directly since they are at the beginning of the stream of data written by TKIO.  The tables at the end of this section list where TKIO obtains values to write in metadata.  The table columns include three columns for the three groups discussed above: L1B for Level 1B algorithms, L1C2 for Level 1C and Level 2 algorithms, and L3 for Level 3 algorithms.  Following the metadata element GranuleNumber through the PR stream as an example, 1B21 directly writes GranuleNumber, 1C21 copies GranuleNumber from the 1B21 metadata, and 2A25 copies GranuleNumber from the 1C21 metadata.  3A25 does not copy GranuleNumber since it is orbital information.

TKIO writes metadata using the instructions in the metadata config file.  These instructions include the source of information that TKIO uses to write the metadata.  The sources for each metadata element are listed in the tables at the end of this section.  Possible sources are BLUE, ALG, TK, TKs, COPY, NULL, and NA.  The meaning of each source is explained below.  The metadata config files are part of TKIO, and algorithm developers and researchers need not examine or modify them.

Source BLUE means that the value of the metadata element is determined from the blueprint file.  For example, the value of AlgorithmID is '1B11' for the 1B11 product.  This is done automatically and does not involve the algorithm.

Source ALG means that the algorithm program should write the metadata element directly.  For example, all algorithms write AlgorithmVersion directly.

Source TK means that TKIO writes the metadata element.  For example, TKIO finds the current date and time and writes them in GenerationDateTime.

Source TKs means that TKIO writes this metadata element with information supplied by the processing system.  For example, if an algorithm runs in PPS, PPS supplies its name to TKIO and TKIO writes 'PPS' in ProcessingSystem.  If algorithm developers and researchers run an algorithm on their home computers, TKIO will write a blank string in ProcessingSystem.

Source COPY means that both the algorithm and TKIO are involved.  TKIO performs the work, and the algorithm tells TKIO when to do the work.  The algorithm calls TKtransferMetaData, which transfers values from metadata in input files as specified in the TK metadata config file.  The algorithm need only call TKtransferMetaData once to copy all the metadata specified by the metadata config file.  For example, the 2A12 metadata config file includes an instruction that the InputFileNames receive the value of the 1B11 metadata called FileName.  Thus, the file name of the 1B11 input is transferred to the 2A12 metadata InputFileNames.  However, TKIO will read metadata only from an input file written by TKIO that has metadata.  Therefore, 1B11 cannot use TKtransferMetaData to copy from 1A11, since 1A11 was not written by TKIO and does not have metadata.

Source NULL means that the metadata element appears but will contain an empty string.  For example, GranuleNumber has no meaning for a Level 3 product and therefore appears with an empty string.  The reason for the element to appear is the desire to have any metadata group always contain the same set of elements for all algorithms for which it appears.  In other words, a metadata group either appears or not for a particular algorithm, and if it appears, it will have all of its elements.

Source NA means that the element does not appear at the specified level.  For example, the entire metadata group NavigationRecord contains orbital elements such as LongitudeOfMaximumLatitude and does not appear in Level 3 algorithms.

An algorithm always has the ability to write any metadata directly that the algorithm developer or researcher wishes.  A direct write by the algorithm always overrides any other way to write the value.

FileHeader (for all algorithms)

	Name
	L1B
	L1C2
	L3
	Type

	AlgorithmID
	BLUE
	BLUE
	BLUE
	Character

	AlgorithmVersion
	ALG
	ALG
	ALG
	Character

	FileName
	TK
	TK
	TK
	Character

	GenerationDateTime
	TK
	TK
	TK
	Character

	StartGranuleDateTime
	ALG
	COPY
	ALG
	Character

	StopGranuleDateTime
	ALG
	COPY
	ALG
	Character

	GranuleNumber
	ALG
	COPY
	NULL
	Integer

	NumberOfSwaths
	BLUE
	BLUE
	BLUE
	Integer

	NumberOfGrids
	BLUE
	BLUE
	BLUE
	Integer

	GranuleStart
	BLUE
	BLUE
	NULL
	Character

	TimeInterval
	BLUE
	BLUE
	BLUE
	Character

	ProcessingSystem
	TKs
	TKs
	TKs
	Character

	ProductVersion
	TKs
	TKs
	TKs
	Character

	MissingData
	ALG
	COPY
	NULL
	Integer


InputRecord (for L1 L2, not in L3)
	Name
	L1B
	L1C2
	L3
	Type

	InputFileNames
	ALG
	COPY
	NA
	Character

	InputAlgorithmVersions
	ALG
	COPY
	NA
	Character

	InputGenerationDateTimes
	ALG
	COPY
	NA
	Character


(The same information that for L1 L2 is specified above as three elements of the InputRecord Group is specified below for L3 as three separate arrays.  The arrays appear with the data.)
	Name
	L1B
	L1C2
	L3
	Type

	InputFileNames

(for L3 only, array)
	NA
	NA
	COPY
	Character

	InputAlgorithmVersions

(for L3 only, array)
	NA
	NA
	COPY
	Character

	InputGenerationDateTimes

(for L3 only, array)
	NA
	NA
	COPY
	Character


NavigationRecord (for L1 L2, not in L3)
	Name
	L1B
	L1C2
	L3
	Type

	LongitudeOfMaximumLatitude
	ALG
	COPY
	NA
	Float

	SolarBetaAngleAtBeginningOfGranule
	ALG
	COPY
	NA
	Float

	SolarBetaAngleAtEndOfGranule
	ALG
	COPY
	NA
	Float


FileInfo (for all algorithms)
	Name
	L1B
	L1C2
	L3
	Type

	DataFormatVersion
	BLUE
	BLUE
	BLUE
	Character

	TKCodeBuildVersion
	BLUE
	BLUE
	BLUE
	Character

	MetadataVersion
	BLUE
	BLUE
	BLUE
	Character

	FormatPackage
	TK
	TK
	TK
	Character

	BlueprintFilename
	BLUE
	BLUE
	BLUE
	Character

	BlueprintVersion
	BLUE
	BLUE
	BLUE
	Character

	TKIOVersion
	TK
	TK
	TK
	Character

	MetadataStyle
	BLUE
	BLUE
	BLUE
	Character

	EndianType
	TK
	TK
	TK
	Character


JAXAInfo (for L1 L2 L3 PR only)
	Name
	L1B
	L1C2
	L3
	Type

	CalibrationCoefficientVersion
	ALG
	COPY
	COPY
	Character

	GranuleFirstScanUTCDate
	ALG
	COPY
	NA
	Character

	GranuleFirstScanUTCTime
	ALG
	COPY
	NA
	Character

	GranuleFirstScanUTCMilliseconds
	ALG
	COPY
	NA
	Integer

	GranuleLastScanUTCDate
	ALG
	COPY
	NA
	Character

	GranuleLastScanUTCTime
	ALG
	COPY
	NA
	Character

	GranuleLastScanUTCMilliseconds
	ALG
	COPY
	NA
	Integer

	SoftwareVersion
	ALG
	COPY
	COPY
	Character

	DatabaseVersion
	ALG
	COPY
	COPY
	Character

	TotalQualityCode
	ALG
	COPY
	COPY
	Character

	LongitudeOnEquator
	ALG
	COPY
	NA
	Float

	UTCDateOnEquator
	ALG
	COPY
	NA
	Character

	UTCTimeOnEquator
	ALG
	COPY
	NA
	Character

	UTCMillisecondsOnEquator
	ALG
	COPY
	NA
	Integer

	CenterScanUTCDate
	ALG
	COPY
	NA
	Character

	CenterScanUTCTime
	ALG
	COPY
	NA
	Character

	CenterScanUTCMilliseconds
	ALG
	COPY
	NA
	Integer

	FirstScanLat
	ALG
	COPY
	NA
	Float

	FirstScanLon
	ALG
	COPY
	NA
	Float

	LastScanLat
	ALG
	COPY
	NA
	Float

	LastScanLon
	ALG
	COPY
	NA
	Float

	NumberOfRainScans
	ALG
	COPY
	NA
	Integer


GprofInfo (for 2A12 only)

	Name
	L1B
	L1C2
	L3
	Type

	Satellite
	NA
	ALG
	NA
	Character

	Sensor
	NA
	ALG
	NA
	Character

	DatabaseVersion
	NA
	ALG
	NA
	Character

	StructureFlag
	NA
	ALG
	NA
	Character

	nSpecies
	NA
	ALG
	NA
	Character

	nFIndex
	NA
	ALG
	NA
	Character

	nLayer
	NA
	ALG
	NA
	Character

	nCluster
	NA
	ALG
	NA
	Character

	Comment1
	NA
	ALG
	NA
	Character

	Comment2
	NA
	ALG
	NA
	Character

	Dummy
	NA
	ALG
	NA
	Character


SwathHeader (for L1 L2, not in L3)
	Name
	L1B
	L1C2
	L3
	Type

	NumberScansInSet
	BLUE
	BLUE
	NA
	Integer

	MaximumNumberScansTotal
	BLUE
	BLUE
	NA
	Integer

	NumberScansBeforeGranule
	BLUE
	BLUE
	NA
	Integer

	NumberScansGranule
	TK
	TK
	NA
	Integer

	NumberScansAfterGranule
	BLUE
	BLUE
	NA
	Integer

	NumberPixels
	BLUE
	BLUE
	NA
	Integer

	ScanType
	BLUE
	BLUE
	NA
	Character


GridHeader (for L3, not in L1 L2)
	Name
	L1B
	L1C2
	L3
	Type

	BinMethod
	NA
	NA
	BLUE
	Character

	Registration
	NA
	NA
	BLUE
	Character

	LatitudeResolution
	NA
	NA
	BLUE
	Float

	LongitudeResolution
	NA
	NA
	BLUE
	Float

	NorthBoundingCoordinate
	NA
	NA
	BLUE
	Float

	SouthBoundingCoordinate
	NA
	NA
	BLUE
	Float

	EastBoundingCoordinate
	NA
	NA
	BLUE
	Float

	WestBoundingCoordinate
	NA
	NA
	BLUE
	Float

	Origin
	NA
	NA
	BLUE
	Character


APPENDIX A.  TRANSITION FROM TSDIS TOOLKIT TO PPS TKIO
(Information for Algorithm Developers and Researchers Using the FORTRAN Interface)

Introduction
This document is a guide for transitioning existing TRMM algorithms from the TSDIS Toolkit to PPS TKIO.  For a complete list of TKIO functions and their uses, see the TKIO documentation.

Existing TSDIS Toolkit functions must be replaced by TKIO functions.  In many cases the functions are the same; however, some function names and arguments have changed.  The mapping of common functions is listed below.

TKIO can handle various physical formats (binary, HDF4, HDF5).  For this transition guide we are assuming HDF4 will be used.  This guide also assumes that the input data is a PPS product file with PPS metadata.  TKIO does allow access to V6 TSDIS products that contain TSDIS metadata using other functions; see TKIO documentation for examples.  In addition to this small guide, example code is provided in the TKIO distribution.  The example used below is the 2A21 TRMM PR algorithm, which reads in 1B21 product and writes out a 2A21 product file.

Notes on FORTRAN:  One of the design goals of TKIO is compatibility across computing platforms.  The TSDIS Toolkit utilized FORTRAN wrappers around C functions for the FORTRAN interface, whereas TKIO uses native FORTRAN code.  The wrappers used in the TSDIS Toolkit allowed the use of FORTRAN functions, while TKIO uses FORTRAN subroutines.  The use of extensions to FORTRAN 77 is common but non-standard.  Therefore, TKIO only uses those extensions to the language that are critical, such as structure/record and system calls to get environmental variables.  FORTRAN 90, 95, etc. encompass the FORTRAN 77 language and have standardized some of FORTRAN 77 extensions (although using different syntax).  PPS experience with the Intel FORTRAN compiler has shown that it will compile mixed standard FORTRAN 77, FORTRAN 77 with extensions, and FORTRAN 95 code.  Therefore, algorithms written in FORTRAN 95 can still use the existing TKIO FORTRAN interface without the need for a native FORTRAN 95 TKIO interface.

Jobname
Command lines for algorithms need to be modified to incorporate the passing of a jobname from the processing system to the algorithm.  This is a simple string of max. 256 characters that is used by the messaging system to identify algorithm jobs.  This should be the first argument to the algorithm.  When run outside the processing system, the jobname can be assigned a dummy string.

Header Files
The TSDIS TK header files should be replaced with those used in TKIO.  The following is an example of the header files, which should be removed and replaced.  Note in TKIO the FORTRAN 77 extension INCLUDE is used to include header files as opposed to the C-preprocessor. 


The TKheaders.h file includes the function declarations for the TKIO functions and defines various constants (TK_SUCCESS, TK_FAIL, etc).  In addition, each product has its structures defined in its own header file. 

The TK_2A21messages.h file is discussed below under Messages.

Declarations
The structures used by TKIO map to the data structures found in the product files.  For information on each product’s structure definitions, see the corresponding header file. 



TK Functions
The jobname must be passed to TKopen and any calls to TKmessage.  Note the different strings used for algorithm ID and TKopen read flag.  In FORTRAN the TKIO interface uses subroutines with the status as the last argument.

The generic routines TKreadScan, TKwriteScan, TKreadGrid, TKwriteGrid, TKreadStruct, and TKwriteStruct have no provision for passing void pointers as written.  Therefore, COMMON blocks must be used to allow the generic routines to pass information to specific structures.

Some data exists outside the swath structure and was accessed using specialized functions in the TSDIS Toolkit.  Note that the name of the structure is required in the TKIO call.  This is the same string that is used to name the structure for the product-specific header.

Messages

Messages are passed using TKmessage.  In the TSDIS Toolkit, messages were predefined by mnemonics and the strings were hard-coded by the Toolkit.  In TKIO, the user is free to pass a free-form string to TKmessage.  Since the TRMM algorithms already have mnemonics and strings defined, a header file is provided for each algorithm that redefines the mnemonic as a simple string.  This allows users to continue to use the mnemonic in the new TKIO call to TKmessage if they choose.  The header file TK_2A21messages.h is a C syntax header file, so the C-preprocessor will need to be used to parse it.

TKmessage replaces both TKreportError and TKreportWarning, and a priority needs to be passed into TKmessage in addition to the jobname.  The current priorities are TKERROR, TKWARN, and TKINFORM.  These priorities will be used by the PPS system to take further action.  Outside the PPS system, TKmessage posts all messages to standard out.  TKmessage does not take any action beyond sending the message; it is up to the user to cleanly exit processing if required.  Non-zero exit values from algorithms in PPS are considered a FAILURE.

Metadata

Metadata calls in TKIO need to specify the location of the item that is being accessed.  In PPS files metadata items are placed in groups.  See the metadata documentation for a list of items and groupings and the TKIO documentation for a complete list of metadata functions.

Metadata is not copied from input to output automatically in TKIO.  A call must be made to perform this action.  The specific elements that are copied from input to output are specified in the metadata configuration file for each algorithm.  An example calling sequence with input files of 1C21, 2A21, 2A23, and an output file of 2A25 is:

Any metadata written explicitly by the algorithm using a TKsetMeta* call will take precedence over the transfer function.  These transfers should be called prior to closing the input and output files.

The TKclose function has changed to a subroutine with a returned status argument.


Level 3 Algorithms
Most Level 3 algorithms for TRMM operate on one orbit of data at a time.  In order to accumulate metadata information from one execution to another, an intermediate metadata file must be written.  At the last execution of the algorithm (END run), the intermediate metadata file is read and the information placed into the output TKIO handle that will be written to the product file when calling TKclose.
The temporary metadata file name is expected to be passed in on the command line.  In PPS this temporary metadata file will be managed by PPS.  The application does not need to open or close the temporary metadata file; simply pass in the filename string to the TKIO routine.

As always, contact PPS at helpdesk@pps-mail.nascom.nasa.gov if you have any questions. 

APPENDIX B.  TKIO README
1)  To install TKIO, the INSTALL.pl script must be run three times as follows:

  ./INSTALL.pl compileJAVA – compiles the JAVA code into classes, misc setup.

  ./INSTALL.pl buildRW – uses the JAVA classes to build algorithm r/w code, misc setup.

  ./INSTALL.pl compileRW – compiles and links the r/w code, misc setup.

However, if you do not have JAVA, then you need to obtain a copy of TKIO that has already run the first two steps for you.  If you are not sure, check the tkio/inc/ccode and/or tkio/inc/fortcode directory.  If at least one of these directories has several '.h' files, then the first two steps of the install script have been run, and you need only run '.INSTALL.pl compileRW'.

Before running INSTALL.pl, follow the instructions of this README file in order to set up your environment correctly.

2)  You must have Perl installed on your system in order to be able to install TKIO by running the INSTALL.pl script.

3)  Set up a $TKIO environmental variable that points to the TKIO directory.  $TKIO is used for installation and also in any executable you build that uses TKIO.

4)  Add $TKIO/classes to your $CLASSPATH environmental variable if you are planning to run either the 'compileJAVA' or 'buildRW' portion of the INSTALL.

  ex. For .cshrc:


setenv CLASSPATH /home/user/tkio/classes

  ex. For .bashrc:


CLASSPATH=/home/user/tkio/classes

5)  This version of TKIO has been tested with HDF4.2r4.  HDF is available at www.hdfgroup.com.  HDF must be installed on your system.  After installation, set up the following environmental variables:

  $HDF4_INC – points to the include directory of HDF4.

  $HDF4_LIB – points to the library directory of HDF4.

If you encounter strange problems when trying to read/write HDF files in FORTRAN, it may be that your HDF library was installed with a different FORTRAN compiler than the one you are currently using.  It is best to use the same FORTRAN compiler for the HDF install and for TKIO install/use.  See the INSTALL/configure notes for the HDF library.

6)  TKIO is currently being developed with JAVA version 1.6.0_14.  If you use an earlier version, then the JAVA code may fail to compile for lack of new functionality.

7)  Set up a $CC environmental variable that points to your C compiler and a $FORTC environmental variable that points to your FORTRAN compiler.

If you wish to use FORTRAN, then you must have a FORTRAN compiler that allows structure/record formats.

Note:  We are currently using the Intel FORTRAN compiler.  If you use another FORTRAN compiler, the call to get the environmental variable $TKIO may not work.  This call is made in the $TKIO/fortcode/select/TKopen.f routine.

Also, in $TKIO/fortcode/tk/TKsetgendatetime.f, an Intel-specific call is made:  'date_and_time'.  For other compilers, add your own call if you want the output product file to have a correct generation date/time.
8)  If you want the TKIO code to have debugging capabilities, you must set up a $TKDEBUG environmental variable with a value of -g.  Otherwise, make sure that $TKDEBUG is blank.

9)  It is not recommended at this time, but if you have JAVA and you want to change the 'default' configs, you may carefully edit the $TKIO/INSTALL.pl script to select languages and formats.  Change only the section marked ''USERS MAY ADJUST THE FOLLOWING'' near the beginning of INSTALL.pl.  See that section of INSTALL.pl for examples of possible changes.
10)  The $TKIO/configfiles directory contains all the configuration files for which r/w code will be built.  It is not recommended at this time, but you may add files to or delete files from this directory.  There is also a file called 'default.versions'.  You may leave this file as it is, or you may change it.  If you delete or add config files, make sure that you update 'default.versions' appropriately.  See TKIO.codenotes for details on how to change this file.  Any changes must be made before running all three of the installation steps:  In other words, you must have JAVA.
11)  You are now ready to run the INSTALL.pl script.  Run it three times as follows (or just run the last step if appropriate):

  ./INSTALL.pl compileJAVA – compiles the JAVA code into classes, misc setup.

  ./INSTALL.pl buildRW – uses the JAVA classes to build algorithm r/w code, misc setup.

  ./INSTALL.pl compileRW – compiles and links the r/w code, misc setup.

You can ignore the following error messages:

  rm: cannot remove `*.o': No such file or directory

  make: *** [clean] Error 1

12)  After the INSTALL.pl script has been run, you may need to compile the 'helper' functions.  These are functions that are not part of the standard TKIO but that have been included as a courtesy to users.  Check the $TKIO/ccode/helper and $TKIO/fortcode/helper directories to see if you need any of the functions.  You will need to modify as appropriate.  For example, if you want to use TKcpyscan1C21to2A25.c, then you would copy either the a1.a1 or b1.b1 version to 
TKcpyscan1C21to2A25.c (see the helper directory to make this clear) and then run the makefile (modified if necessary; for example, you may not want all the helper functions) to create the helper library.  You will also have to add the header files to your code, as they are not in TKHEADERS.h.  If you do not use any helper functions, then you don't need to do this.

13)  See TKIO.codenotes for coding information.  See TKIO.FAQ for miscellaneous information.  See $TKIO/ccode/test and $TKIO/fortcode/test for coding examples.

14)  How to run a test program in C:

a) Go to $TKIO/ccode/test.

b) Select one of the coding examples and copy it; for example, 'cp test.c.3A26 test.c'.

c) Open test.c and change the filenames as appropriate.

d) Type 'make FILE=test'.

e) Test can now be run and will copy the input file data (but NOT the metadata) to an output file.

f) Compare these two files to make sure the output file is an accurate copy of the input file.  If applicable, check the metadata to make sure the number of scans is correct if appropriate.
15)  Hardware and compilation information is as follows:

Hardware/OS:  Linux 32-bit or 64-bit.  Minimum memory depends on algorithm data requirements.  Minimum for TRMM V7 algorithms is 3GB usable.  Tested and known working with Red Hat Enterprise Linux (RHEL) 4.x and 5.x, and compatible variants (i.e., CentOS).  Should work with any Linux OS with kernel >= 2.6.9 and glibc >= 2.3.4.

Compilers:  1) GCC, and 2) Intel FORTRAN (used at PPS and recommended).  Limited testing with PGI FORTRAN indicates that TKIO will work with minor changes.

Memory Model Compiler Options:  Applications (algorithms) built against the TKIO and HDF libraries that require 2GB or more of data space should be built with the medium memory model.  This model is supported by GCC, Intel, and PGI.  If the application requires the medium memory model, both TKIO and HDF should be built with that memory model as well.  The default build of TKIO FORTRAN includes mcmodel=medium for the Intel FORTRAN compiler.  If you also require medium memory model for C, add the option to the CC environment variable prior to compiling TKIO.  HDF should be built with the medium memory model for BOTH C and FORTRAN, regardless of which TKIO language is used.  TKIO and HDF libraries built with the medium memory model can be used for applications compiled with the medium or default (lower) memory models.

When building a FORTRAN application requiring the medium memory model with the Intel FORTRAN compiler, the -shared-intel switch must also be used, as this instructs the compiler to use the Intel shared runtime libraries that allow relocation past 2GB.  Another option would be to compile the Intel static libraries with -fPIC on installation.

APPENDIX C.  TKIO FREQUENTLY ASKED QUESTIONS (FAQ)
1)  What languages and formats does TKIO currently handle?

C:  HDF4 and binary.

FORTRAN:  HDF4.
2)  What algorithm data products can TKIO read and write?

TSDIS Version 6 data products and preliminary Version 7 products.  See $TKIO/configfiles for a list of all the currently incorporated algorithm config files.

3)  What happens when you run the INSTALL scripts?

INSTALL.pl compileJAVA:

  Compiles the JAVA classes, and initializes TKIO.

INSTALL.pl buildRW:

  Using JAVA classes builds algorithm code for configuration files in the 

  TKIO/configfiles directory.  Initializes TKIO.
INSTALL.pl compileRW:

  Compiles all the code built by the JAVA classes.  Initializes TKIO.
4)  What TKIO routines do algorithms use?

The most frequently used routines are as follows:

  TKopen

  TKclose

  TKreadScan

  TKwriteScan

  TKreadGrid

  TKwriteGrid

  TKreadStruct

  TKwriteStruct

  TKgetMetaxxx

  TKsetMetaxxx

The TKreadStruct and TKwriteStruct routines handle all data that is not a swath, a grid, or metadata.

5)  Where can I find example code and makefiles?

See $TKIO/ccode/test and $TKIO/fortcode/test for coding examples.  ($TKIO is the directory where you installed TKIO.)

For example, to run $TKIO/ccode/test/test.c.2A25:

a) Copy test.c.2A25 to test.c.

b) Make necessary changes to test.c; for example, enter your filename.
c) Type 'make FILE=test' to run the makefile that compiles the code.  The makefile may need some adjustment depending on how HDF or other formats were installed.
d) The executable $TKIO/ccode/test/test can now be run.  It will make a copy of your input file data (but not metadata).

6)  How do I find out structure declaration names for my algorithm?

See the TK_<algid>.h files (ex. TK_2A25.h) in the $TKIO/inc/ccode and $TKIO/inc/fortcode directories.  The same header files are also in $TKIO/ccode/algstructs and $TKIO/fortcode/algstructs.

7)  How do I find out the structure name that gets sent into TKreadStruct and TKwriteStruct?

See the TK_<algid>.h files (ex. TK_2A25.h) in the $TKIO/inc/ccode and $TKIO/inc/fortcode directories.  The same header files are also in $TKIO/ccode/algstructs and $TKIO/fortcode/algstructs.  This information can also be found in the File Specifications Document.

8)  My FORTRAN compiler is having trouble compiling/linking with the call to get an environmental variable in TKopen.f.  Why?

Calls to get an environmental variable are compiler dependent.  The TKIO installation assumes that you are using the Intel compiler.  If you are not, then you need to change the subroutine

  $TKIO/fortcode/select/TKopen.f

to reflect your compiler's call to get an environmental variable.

9)  My FORTRAN compiler is having trouble compiling/linking with the call 'CALL date_and_time'.  Why?

'date_and_time' is an Intel routine.  The TKIO installation assumes that you are using the Intel compiler.  If you are not, then you need to comment out the call in $TKIO/fortcode/tk/TKsetgendatetime.f and add your own call if you want the product generation time to be correct.

10)  How do I find out which metadata needs to be updated by the algorithm?

See the File Specifications Document.
11)  How do I read and write intermediate metadata?

See the TKIO User's Guide for a full explanation.  In general:

Call TKwriteMetaFile for every orbit that is processed, including the last orbit.  (TKwriteMetaFile should be called after the algorithm has made any desired metadata updates and before TKclose.)

If your final product is called in a separate executable from the one that processed the last orbit, then you will need to call TKreadMetaFile to get the metadata into memory before the final product write.

Some details:  TKwriteMetaFile does the following: 1) Calls TKreadMetaFile to read in any existing intermediate metafile, 2) calls TKtransferMetaData, and 3) writes out the intermediate metafile.

Note that neither TKtransferMetaData nor TKreadMetaFile will overwrite any metadata updates that the algorithm may have made, so be careful with timing.  The general rule is to call TKwriteMetaFile when the algorithm is completely finished updating metadata and to call TKreadMetaFile (if necessary) before any further algorithm updates.
12)  How do I transfer metadata from one algorithm to another?

Use TKtransferMetaData to transfer metadata.  This is mostly used for Level 2 algorithms.  It uses the instructions in the *.metadata.cfg files to determine what metadata should be transferred.

13)  How do I seek to a specific scanline?

Use TKseek.

Note:  After TKopen, the file pointer is positioned at the beginning of the orbit.  So if you wish to read overlap scans, you must make a call to TKseek to go back to the beginning of the overlap scans.  The call to TKseek computes your desired position.  However, the file pointer may not actually be set to that position until you make a call to TKread (this is the case in binary).

14)  Can I build my own config files to describe my data and then reinstall TKIO to build the read/write code?

No!  This is not recommended at this time, as there are no instructions on how to build configfiles.  Incorrect files will lead to unpredictable results.

15)  What is a default algorithm?

'Default' algorithm usually refers to the latest processing version of the algorithm as defined by BLUE.  It is possible for you to define which algorithm should be the default by modifying the $TKIO/configfiles/default.versions file and rebuilding and reinstalling TKIO.  However, it is not recommended at this time.
16)  What are some of the 'versions' associated with an algorithm data product?

Algorithm ID – The algorithm identification.

AlgorithmVersion – The version of the algorithm.  It is up to the user to write this value to the metadata of the product file during the running of the algorithm.

ProductVersion – More of a processing version compared to AlgorithmVersion.  This value is passed into the algorithm and given to TKIO, which updates the metadata of the product file with this value.

DataFormatVersion – The format version of the data; this would change if, for instance, parameters were added or deleted, or dimension sizes changed.  Value is hard-coded in the algid.data.cfg file, and TKIO updates the metadata of the product file with this value.

BlueprintVersion – The version of Blueprint used to generate the config files.  Value is hard-coded in the algid.metadata.cfg file, and TKIO updates the metadata of the product file with this value.
TKIOVersion – The version of TKIO used to generate the data product file.  This is set in the code of TKIO by a programmer prior to a new release of TKIO, and TKIO updates the metadata of the product file with this value.

MetadataVersion – Similar to DataFormatVersion but for metadata; this would change if metadata elements were added or deleted.  This value is hard-coded in the algid.metadata.cfg file.

TKCodeBuildVersion – Basically identifies how the 'STRUCTS' were coded.  Value is hard-coded in the algid.data.cfg file, and TKIO updates the metadata of the product file with this value.

17)  If I get a warning that my product was not built with the current default config file, how do I fix it?
Go to the $TKIO/ccode/tools or $TKIO/fortcode/tools directory and use 'TKversionsBinary' or 'TKversionsHDF4' as appropriate.

All of the versions listed above (#16) will be printed.  At the end of the output, you will see something like this (using 1B11 as an example):

  PRODUCT CONFIGURATION ID:  1B11_a1

  PRODUCT CONFIGURATION ID:  1B11_b1

This example tells you that in your call to TKopen you must use '1B11_a1' rather than '1B11' since '1B11' indicates the default, which in this case is '1B11_b1', and thus does not match '1B11_a1'.  In addition, you must change all of your structure names from the default version (for example, 'L1B11_SWATH' to 'L1B11_SWATH_a1').

Alternatively, you could rebuild TKIO to use 1B11_a1 as your default.

18)  Are binary files random access?

For reading, TKseek may be used to jump around the swath.  TKIO writes out binary files ordered as described in the *.data.config file and expects data to be read in the same order.

19)  What is 'jobname' in TKopen?

'jobname' is used in PPS data processing to trace errors and also to send metadata information to the algorithm.  If the algorithm is running in PPS, then 'jobname' will be passed to the algorithm as the first argument on the command line.  The algorithm must then send 'jobname' to TKopen.

In the PPS system, the file 'jobname.TKIOmetafile' is used to update a couple of items in the metadata.  If you want to make sure that this feature is working correctly, you may use the file in $TKIO/ccode/test/ (or $TKIO/fortcode/test/) called 'jobid.TKIOmetafile' for testing.  Simply send in 'jobid' as your 'jobname' and make sure that the file is available in the directory where the algorithm is to be run, and TKIO will update the metadata appropriately.
If the algorithm is not being run in PPS, you may send in any string desired to TKopen.  If the 'jobname.TKIOmetafile' is not found by TKIO, a warning will be printed, and the metadata will not be updated but the algorithm will continue to run.

20)  How do I read TSDIS metadata?

First make sure that you have called the TKinitTSDIS function.  After that you can use TKgetTSDISmetafloat, etc., to get metadata values.

APPENDIX D.  TKIO CODE NOTES
1)  All necessary TKIO libraries are located in the $TKIO/lib directory.

For example, C has the following, which are associated with each subdirectory in TKIO:

  libtkc.a

/* general tkio lib */

  libtkchdf4.a

/* general tkio hdf4 lib */

  libtkchdf4algs.a
/* algorithm-specific code for hdf4 */

  libtkcselect.a

/* TKopen, TKclose, TKreadscan, etc. code */

  libtkcTSDIS.a
/* code for handling TSDIS products */

  libtkcbinary.a
/* general TKbinary lib */

  libtkcbinaryalgs.a
/* algorithm-specific code for TKbinary */

FORTRAN has similarly named libraries for HDF4.
Note that the above are TKIO libraries and not HDF4 libraries.  You must set up $HDF4_LIB to point to the correct location for HDF4 libraries.

2)  All necessary TKIO include files are located in $TKIO/inc/ccode and in $TKIO/inc/fortcode.
Note that the above are TKIO include files and not HDF4 include files.  You must set up $HDF4_INC to point to the correct location for HDF4 libraries.

3)  There are many subroutines and functions in TKIO.  In general, users will call only a few of these.  For example programs, see $TKIO/ccode/test and $TKIO/fortcode/test.  The most frequently used routines are as follows:

  TKopen

  TKclose

  TKreadScan

  TKwriteScan

  TKreadGrid

  TKwriteGrid

  TKreadStruct

  TKwriteStruct

  TKgetMetaxxx

  TKsetMetaxxx

4)  Below is miscellaneous code information, using C as the example.  See the test routines in $TKIO/ccode/test as examples.

a) You must include TKheaders.h in any C code routines that use TKIO functions (TKHEADERS.h in FORTRAN code).

b) You must declare a TKINFO structure FOR EACH DATA PRODUCT FILE that will be read or written to by TKIO:

  TKINFO tkinfo;

This structure will contain all information for the file.  It is similar to what is called a granuleHandle in TSDIS.  Note:  AT THIS TIME YOU CANNOT REUSE TKINFO TO REOPEN A FILE OR TO OPEN A NEW FILE.  YOU MUST DECLARE A NEW TKINFO STRUCTURE FOR EVERY FILE.
c) For EACH file you must call TKopen and TKclose.  Start with a call to TKopen and end with a call to TKclose.  Do not call any TK code until you have called TKopen.  Always call TKclose as the last TK function call.

  ex.:

  TKopen ( "L2A25.HDF", "2A25", TKREAD, "HDF4", "jobname", &tkfileinfo );

  arguments:
name of product file

algorithm id

TKREAD or TKWRITE

format type – "HDF4" or "binary"

jobname – This argument is sent in to the algorithm as the first argument on the
command line when running in PPS.  Otherwise, you may send in any string.  See TKIO.FAQ for further details.
pointer to TKINFO structure

  TKclose ( &tkinfo );

  arguments: ptr to TKINFO structure

d) Calls to read and write data (in C; see FORTRAN header files for FORTRAN calling parameters):

  example structure declarations:

  L2A25_SWATH swath;

  L2A25_CLUTTER clutter[49];

  L3A25_GRIDS grid;

  TKreadScan ( &tkinfo, &swath );

  TKwriteScan ( &tkinfo, &swath );

  (TKreadScan/TKwriteScan r/w data one scan at a time.)
  TKreadGrid ( &tkinfo, &grid );

  TKwriteGrid ( &tkinfo, &grid );

Anything that is not a swath or grid must be called with TKreadStruct/TKwriteStruct.  Use the name of the structure to indicate what you want to read.

  TKreadStruct ( &tkinfo, clutter, "L2A25_CLUTTER" );

  TKwriteStruct ( &tkinfo, clutter, "L2A25_CLUTTER" );

  The name of the structure can be found by examining the header files in 

  $TKIO/inc/ccode or $TKIO/inc/fortcode, or by reading the File Specifications Document.

e) Calls to read and write metadata:

  ex.:

  TKgetMetaInt ( &tkinfo, "SwathHeader", "NumberScansGranule", &nscans );

  TKgetMetaInt ( &tkinfo, "SwathHeader", "NumberScansBeforeGranule", &addbeg );

  TKgetMetaInt ( &tkinfo, "SwathHeader", "NumberScansAfterGranule", &addend );

  arguments:
ptr to TKINFO

metadata name

metadata element name

ptr to hold metadata value

ex.:

  TKsetMetaInt ( &tkinfo, "SwathHeader", "NumberScansBeforeGranule", 20 );

also:

  TKgetMetaDouble

  TKgetMetaShort

  TKgetMetaFloat

  TKgetMetaString

and all the corresponding TKsetMetaXXX routines.

5)  TSDIS data:

TSDIS data products are different from PPS data products, and they require some extra handling.  After calling TKopen for the TSDIS file you must call:

  ex.: ret=TKinitTSDIS ( &tkinfo, &tsdismeta );

  arguments:
ptr to TKINFO

ptr to TKMETASTRUCT (an extra metadata struct is required for TSDIS files).

To get TSDIS metadata you must use TKgetTSDISmetaint, etc.

TKinitTSDIS will transfer the number of scans in the granule from the TSDIS file metadata into the metadata structure of tkfileinfo.  That is the only data that is transferred.

So there are two ways to get the number of scans for the granule:

a) calling TKgetMetaInt ( &tkinfo, "SwathHeader", "NumberScansGranule", &nscans )

OR

b) calling TKgetTSDISmetaint ( &tsdismeta, "ArchiveMetadata.0", "OrbitSize", &nscans )

6)  Error messages are printed to stdout using the following function call:

  TKmessage (char *jobname, char *messagetype, char *messagestring )

  arguments:
jobname is the same jobname in TKopen; it is stored in TKINFO

messagetype can be TKERROR, TKWARN, TKINFORM, TKOPER (with or 

without quotes)

messagestring is "whatever string you want"

7)  Initially the file pointer for swaths will be located at the beginning of the orbit.  In the event that there are overlap scans from a previous orbit and you want to read them, you must make a call to TKseek to reposition for the next read.

Example of calls to get nscans and overlap scans:

  TKgetmetaint ( tkinfo, "SwathHeader", "NumberScansGranule", &nscans );

  TKgetmetaint ( tkinfo, "SwathHeader", "NumberScansBeforeGranule", &prescans );

  TKgetmetaint ( tkinfo, "SwathHeader", "NumberScansAfterGranule", &postscans );

To seek back prescans from the beginning of the orbit you would call:

  TKseek ( &tkinfo, -1*prescans, TK_ABS_SCAN_OFF );
Another example:

To seek back 15 scans from your current pointer location:

  TKseek ( &tkinfo, -1*15, TK_REL_SCAN_OFF );

8)  Multiswath data:

Multiswath data is handled much the same as single swath data since we are requiring that both swaths be in the same structure (see the TK_1CSSMI_1.h file as an example of such a structure).

After you call TKopen on a multiswath data product, you will be positioned at the beginning of the orbit for all swaths.  In the event that there are overlap scans from a previous orbit and you want to read them, you must make a call to TKseek to reposition for the next read.

Calls to get nscans and overlap scans are made like this for multiswath data:

  TKgetmetaint ( tkinfo, "S1_SwathHeader", "NumberScansGranule", &nscans );

  TKgetmetaint ( tkinfo," S1_SwathHeader", "NumberScansBeforeGranule", &addbeg );

  TKgetmetaint ( tkinfo," S1_SwathHeader", "NumberScansAfterGranule", &addend );

Notice the "S1_SwathHeader" instead of "SwathHeader".

This gives you information on the first swath, but using this information in a call to TKseek will reposition the file ptr for all swaths, not just the first swath.  So if the number of scanlines before the orbit is 10 for swath1 and 20 for swath2, making the following call will put you at the beginning of the scanlines for both swaths:

  TKseek ( &tkinfo, -1*10, TK_ABS_SCAN_OFF );

9)  'default' algorithms:

The $TKIO/configfiles directory contains all the configuration files for which r/w code will be built.  There is also a file called 'default.versions'.  You may leave this file as it is or you may change it.  All configfiles have 'versions'.  For example, in 2A25_b1.data.cfg the 'b1' is the version.  When calling 'TKopen' the 'algid' argument would have to be '2A25_b1' to r/w this algorithm.  If you want to r/w '2A25_b1' but want to send in '2A25' as the command line argument, then the default.versions file must be set appropriately.  This will also make sure that the structures are named simply, ex. L2A25_SWATH instead of L2A25_SWATH_b1.  The default.versions file is very simple.  It is a list of the algorithm IDs followed by the desired default version.  You may change or add to this file BEFORE any of the three installation scripts have been run.  Only one default per algorithm ID is allowed.

TSDISTK�
TKIO�
�
TKopen�
TKopen�
�
TKreadScan�
TKreadScan�
�
TKwriteScan�
TKwriteScan�
�
TKreadGrid�
TKreadGrid�
�
TKwriteGrid�
TKwriteGrid�
�
TKreportError�
TKmessage�
�
TKreportWarning�
TKmessage�
�
TKclose�
TKclose�
�
TKreadMetadataInt�
TKgetMetaInt�
�
TKreadHeader�
TKreadStruct�
�
TKwriteHeader�
TKwriteStruct�
�






TSDIS TK


#include “IO.h”


#include “IO_PR.h”


#include “IO_INTR_PR.h”


#include “TkfortranDeclare.h”


#include "TKerrHandle.h"








TKIO


    INCLUDE “TKheaders.h”


    INCLUDE “TK_1B21.h”


    INCLUDE “TK_2A21.h”





#include "TK_2A21messages.h"





TSDIS TK


        RECORD /WRAPPER_HANDLE/         pGranuleHandle1B21


        RECORD /WRAPPER_HANDLE/         pGranuleHandle2A21


        RECORD /L1B_21_SWATHDATA/       inputdata


        RECORD /L2A_21_SWATHDATA/       outputdata





TKIO 


        RECORD /TKINFO/         pGranuleHandle1B21


        RECORD /TKINFO/         pGranuleHandle2A21 


        RECORD /L1B21_SWATH/    inputdata





c Add a common for TKreadScan/TKwriteScan to pass data into/from.


C COMMON must have same name as the structure declaration.


        COMMOND /L1B21_SWATH/   inputdata 


 


        RECORD /L2A21_SWATH/    outputdata


        COMMON /L2A21_SWATH/    outputdata





TKopen


TSDIS TK


       status = TKopen(granuleID, TK_L2A_21, TK_NEW_FILE,


     1                  pGranuleHandle2A21)


TKIO


       CALL TKopen(granuleID,"2A21",TKWRITE,"HDF4",jobname,


     1                    pGranuleHandle2A21,status)





TKreadScan


TSDIS TK


        status = TKreadScan(pGranuleHandle1B21, inputdata)


TKIO


C A named common block has been defined to hold this data


C COMMON /L1B21_SWATH/ inputdata


        CALL TKreadScan(pGranuleHandle1B21,status)





TKreadHeader


TSDIS TK


        status = TKreadHeader(pGranuleHandle1B21,head)





TKIO


c A named common block has been defined to hold this data


c with name: /L1B21_RAY_HEADER/


        CALL TKreadStruct(pGranuleHandle1B21,'L1B21_RAY_HEADER',


     1               status)





TKmessage


TSDIS TK


         status = TKreportError(E_2A21_FAILOPEN)





TKIO


         CALL TKmessage(jobname,TKERROR, E_2A21_FAILFOPEN)


or


         CALL TKmessage(jobname,TKERROR,”user supplied string”)





Metadata


TSDIS TK        


  status = TKwriteMetadataChar(pGranuleHandle2a21, TK_ALGORITHM_VERSION, algNum)





TKIO


  CALL TKsetMetaString(pGranuleHandle2A21, "FileHeader","AlgorithmVersion",  


                            "algNum",status)








 CALL TKtransferMetaData(pgranuleHandle1B21,pgranuleHandle2A21)





CALL TKclose(pGranuleHandle2A21,status)





c BEGIN, MIDDLE and END runs 


  CALL TKwriteMetaFile(tmpmetafile,info2A12,info3A12,status)





c END run before calling TKclose 


  CALL TKreadMetaFile(tmpmetafile,info3A12,status)








