
SW-LOC-295 1 12/18/2012

HIRDLS
SW-LOC-295

HIGH RESOLUTION DYNAMICS LIMB SOUNDER

Originator: Lawrence Ames Date: 19 March 1998

Sub-
ject/Title:

Mirror Scans and Scan Table Entries

Description/Summary/Contents:

1. This memo gives some background on the Scan Table, and discusses how the in-
terpolation algorithms will interpret it. Various scan patterns are discussed.

Keywords: Software, Scanner, Scan Table Interpolation

Purpose of this Document:
(20 char max.)

ScanTable Entries

Reviewed/Approved by: ________________________
originator:

HIRDLS flight s/w manager

Date (yy-mm-dd):

SW-LOC-295 2 12/18/2012

Advanced Technology Center CAGE Code 65113
Lockheed Martin Missiles & Space

3251 Hanover Street
Palo Alto, CA 94304-1191
United States of America EOS

 The scan table is a record
containing information about the
desired mirror scan pattern. The
exact format (bit pattern, units,
parameter order) is described
elsewhere: this memo discusses
details about the information it
contains. After appropriate de-
coding and unit conversions,
each entry provides a desired an-
gular position in both azimuth and
elevation, a desired angular ve-
locity in az and el, and the time
interval allocated for the mirror to
achieve that position and velocity.
The Scan Table Interpolation
code (see SW-LOC-293 and SW-
LOC-294) interprets the scan ta-
ble entries, and calculates an ap-
propriate position, velocity, and
acceleration (in both az and el) for each (roughly millisecond-) cycle of the TEU soft-
ware (Fig. 1). The control software then calculates the torques required to achieve the
desired position and velocity, taking into account flexure force, friction, viscosity, resid-
ual errors from previous motions, bench accelerations, etc.

 The scan table does not need a large number of entries: many of the required
motions can be described with only a starting entry and an ending entry, and often the
ending entry of one motion can serve as the starting entry of the next.

accel-
erome-

 mirror
encod-

τa(t) τe(t)

θa(t) ωa(t) αa(t) θe(t) ωe(t)
(t)

 t1 θa1 ωa1 θe1
ωe1
 t2 θa2 ωa2 θe2
ωe2
 t3 θa3 ωa3 θe3

tor-

de-
sired

Fig. 1

control algorithm

scan table interpolation

scan table
command
interpreter

SW-LOC-295 3 12/18/2012

 Consider a concrete example (tabulated in Fig. 2, plotted in Fig. 3), with made-
up, but illustrative, values: the actual scan table may have additional scans, a different
start/end point, different limits, and the safe point located somewhere else. For conven-
ience, time is given in seconds, angles in degrees, and velocities in deg/sec. (The code
uses seconds and radians, rad/s, and rad/s2 internally, but the table can be given in
other units, and degrees are easier to visualize.) The
first entry says “take one second to reach point (0,0),
and be at rest there”. Since that is the initial condition
in this simulation, the mirror will just sit there for a se-
cond; if it had been at some other position, the algo-
rithm output would have been a series of steps that it
would move the mirror to there. For actual operation,
a longer time interval should be allowed for this initial
entry, since the scanner is not necessarily in the initial
position upon startup.

 The second entry in Fig. 2 tells the az axis to
remain stationary, but the elevation axis should ac-
celerate to angle 0.5o in one second, and to have a
velocity of +1o/s at that point. These numbers “work
out”: a uniform, constant acceleration will result in that
position at that time with that velocity (θ = θ0 + ω0t + ½αt2, with α = 1o/s2). As described
in SW-LOC-294, the acceleration is not uniform, but rather is the versine function; as
discussed in SW-LOC-293, the acceleration during the two half-intervals need not have
the same amplitude, although they will when the numbers do work out.

 The third entry creates a uniform scan: it says that in 4 seconds, the el mirror is
to be 4o more tilted, and that the velocity at the end is to remain 1o/s. Since the start
and ending velocities are the same, and that velocity times the time interval equals the
change in angle, the numbers again work out, and the mirror will be commanded in a
uniform motion. Obviously, if the ending velocity is different from the start, then there
will be accelerations and non-uniform motions. Less obvious: with the same velocity at
both ends, if the change in angle is too big for the time interval, then the mirror will be
commanded to hurry up for the first half of the interval to make up the distance, and
then slow down for the second half to match the required end velocity. Similarly, if the
time interval is too long for the change in angle, then the motor will be commanded to
decelerate at first to kill time, then accelerate again to match the ending speed.

1,0,0,0,0
1,0,0,.5,1
4,0,0,4.5,1
2,2,0,4.5,-1
4,2,0,.5,-1
2,4,0,.5,1
4,4,0,4.5,1
2,6,0,4.5,-1
4,6,0,.5,-1
2,8,0,.5,1
4,8,0,4.5,1
5,20,0,-1,0
5,20,0,-1,0
5,0,0,0,0

Fig. 2

acceler-

}
const.

}

transition }
const.

}

stopped }

go to “safe”

return to

SW-LOC-295 4 12/18/2012

 The fourth entry transitions to the second scan. As a user, I don’t care how the
controllers moves the mirror
to the new azimuth position
(at 2o): all I want is that it be
ready to begin a uniform
downward scan. The inter-
polation algorithm calculates
the required az accelerate
and decelerate necessary to
move the 2o in azimuth and
to end up stationary in az,
while at the same time de-
celerating the elevation mo-
tion, stopping, and then get-
ting up to speed in the
downward direction. In the
process, the algorithm de-
scribes a curve that smoothly
connects the first upward scan
with the second, downward
one (see upper-left of Fig. 3):
the exact shape of the arc is
determined by the acceleration
profile. Note that care is
needed in allocating the time for this transition: too little time will require excessive ac-
celerations; while if too much time is given, the elevation scan will decelerate at a slow-
er rate, and thus the mirror could drift into the limit. As described in SW-LOC-293, the
code has an “emergency stop” routine that prevents the mirror from actually hitting the
limit, but it jerks the mirror and disrupts the scan pattern: it is far better to check the ta-
ble entries beforehand for extremes (position limits, as well as peak velocities and peak
accelerations—see below).

 The next several entries in the table produces the subsequent scans. The third
from last entry tells the scanners to move to and stop at the “safe” position, looking at
the internal IR reference (simulated here as being at 20,-1). Because the next entry
has the same positions, and also have velocities equal to zero, the scanners are sta-
tionary for the full interval (5 s). Note that simply repeating the positions is not enough:
the velocities have to be zero for both entries as well. Otherwise, the scanners will
move off position so as to get a “running start” to match the velocity for the next entry.

 The last entry in Fig. 2 tells the scanners to return to the initial positions. In nor-
mal operation, the software instead would be instructed to repeat the list in the table, in
which case this last could be eliminated. Just make sure the first entry has a sufficient-
ly long time interval for the scanner to safely return to the initial position—that is, the
last entry could be eliminated if first entry had a 5 s interval. The last entry is needed
for pretesting the scan table entries, as the testing software uses it to calculate veloci-
ties and accelerations for the return segment of the path.

-1

0

1

2

3

4

5

6

-2 0 2 4 6 8 10 12 14 16 18 20

ends
safe

const
vel

limit

Fig. 3

-1

0

1

2

3

4

5

6

-2 0 2 4 6 8 10 12 14 16 18 20

ends
safe

const
vel

constraint overshoot

loops

square

Fig. 4

SW-LOC-295 5 12/18/2012

 Figure 4 shows alternative methods of transitioning between the constant-
velocity scans, with the corresponding scan table entries given in Fig. 5. The first of
these methods (shown at the top left) is to constrain the transition to have a specific
intermediate value. The algorithm will accelerate and decelerate as needed to meet the
constraint. A constraint may be useful if specific timing is required for some reason,
and the scan would otherwise drift past a limit.

 The second method (shown at the bottom left) is to loop at the end of the scan.
The mirror has a constant velocity in elevation over the full length of the scan, then
loops around to get a running start on the azimuth portion of the scan, moves with a
constant velocity azimuthally, then loops around again to get a running start on the con-
stant-velocity upward scan. (Note that the loops appear triangular: that is an artifact of
the versine acceleration profile, where most of the acceleration occurs at ¼ and ¾ of
the way into the time interval; a constant acceleration profile would have created more
rounded loops.)

 The middle-top of Fig. 4 shows an overshoot. While not particularly useful, it
shows what the algorithm will do if instructed to end a scan with a given velocity, and
then be at rest at that same point at a later time: it will overshoot, come back, and stop.
Similarly, if initially at rest at a given point and then instructed to have a given velocity at
that same point, the scanner will have to back away some to get a running start, as
shown.

 The middle-bottom of Fig. 4 shows square corners. It is similar in structure to
the overshoot/running-start case, except that there is space provided for the scanners
to stop and restart. As shown, the azimuth scan in
non-uniform in velocity, accelerating for the first half
and decelerating for the second. It is possible to spec-
ify additional points on that segment so as to create a
uniform-velocity portion, if desired.

In addition, there is the arc (not shown in
Fig. 4), as discussed earlier. It is the simplest, and
probably best, method of transitioning between scans.

 A proposed scan table can (and should) be
tested with the interpolation algorithm prior to use.
While the existing code will need minor modification
before it can be used (e.g., to accept entries in the ac-
tual format and units, and to use the actual accelera-
tions and limits), the operation should remain un-
changed: Run the program “ScanTable” from a Win-
dows prompt. The program will ask for the name of
the scan table data file. It will ask if the user wishes an
output file that contains the position, velocity, and ac-
celeration for both azimuth and elevation, for each
~millisecond scanner strobe count in the total time in-

1,0,0,0,0
1,0,0,.5,1
4,0,0,4.5,1
1,1,1,4.5,0
1,2,0,4.5,-1
4,2,0,.5,-1
2,2,1,.5,0
2,4,1,.5,0
2,4,0,.5,1
4,4,0,4.5,1
2,4,0,4.5,0
2,6,0,4.5,0
2,6,0,4.5,-1
4,6,0,.5,-1
1,6,0,0,0
2,8,0,0,0
1,8,0,.5,1
4,8,0,4.5,1
5,20,0,-1,0
5,20,0,-1,0
5,0,0,0,0

Fig. 5

con-

loop

loop

over-

run start

} arc

square cor-
 square cor-

}

}

}

}

SW-LOC-295 6 12/18/2012

terval. The code then runs the table, and reports the extreme angular positions (and
the corresponding limits); the maximum speeds (and the speed limits); the maximum
accelerations (and the accelerations acceptable for emergency stops); and the peak
accelerations outside of an emergency (and the top non-emergency accelerations). As
the interpolation algorithm does not check speed and acceleration limits, it is important
for the user to check the table entries, and to adjust the entries as appropriate.

~Lawrence Ames.

